

599

Appendix C
Some details of Matrix.xla(m)

C.1 Matrix nomenclature
For the sake of notational compactness, we will denote a square diagonal matrix by D with elements

dii, a square tridiagonal matrix by T with elements tij where | j – i | ≤ 1, most other square matrices by S,
rectangular matrices by R, and all matrix elements by mij. A vector will be shown as v, with elements vi,
and a scalar as s. Particular values are denoted by x when real, and by z when complex. All optional pa-
rameters are shown in straight brackets, []. All matrices, vectors, and scalars are assumed to be real, ex-
cept when specified otherwise. All matrices are restricted to two dimensions, and vectors to one dimen-
sion. Table C.1 briefly explains some matrix terms that will be used in subsequent tables.

With some functions, the user is given the integer option Int of applying integer arithmetic. When a
matrix only contains integer elements, selecting integer arithmetic may avoid most round-off problems.
On the other hand, the range of integer arithmetic is limited, so that overflow errors may result if the ma-
trix is large and/or contains large numbers. Another common option it Tiny, which defines the absolute
value of quantities that can be regarded as most likely resulting from round-off errors, and are therefore
set to zero. When not activated, the routine will use its user-definable default value.
Condition of a matrix: ratio of its largest to smallest singular value
Diagonal of a square matrix: the set of terms mij where i = j
Diagonal matrix D square matrix with mij = 0 for all off-diagonal elements i ≠ j.
Decomposition or factorization: writing a matrix as the product of two or more special matrices
False as optional parameter: False = 0
First lower subdiagonal of a square matrix: the set of terms mij where j = i+1
First upper subdiagonal of a square matrix: the set of terms mij where j = i–1
Inverse square matrix S–1 square matrix that satisfies S–1 S = S S–1 = I
Hermitean matrix a square matrix for which S*T = S where S* denotes the complex conjugate of S;

all symmetric real matrices are Hermitian
Hessenberg matrix H a square matrix with mij = 0 for j = i+k, k > 1
Lower triangular matrix L a square matrix with only 0’s below its diagonal
Order of a square matrix: its number of rows or columns
Orthogonal matrix a real, square matrix with the property S–1 = ST
Rank order of largest nonsingular square submatrix of a matrix
Rectangular matrix R a matrix with (in general) an unequal number of rows and columns
Square matrix S a matrix with an equal number of rows and columns
Subdiagonal the set of terms mij where i = j±k where k is an integer
Symmetric matrix a square matrix S with all mij = mji, hence S = ST
Toeplitz matrix a square matrix with constant elements on each diagonal parallel to the main diagonal
Transpose RT matrix after interchanging its rows and columns
Triangular matrix T matrix with non-zero terms only on its diagonal and first upper and lower subdiagonals
True as optional parameter: True = 1
Uniform matrix repeats its elements on its diagonal and each subdiagonal
Unit matrix I square matrix of arbitrary dimension m×m with 1’s on its diagonal, and 0’s above and below it
Upper triangular matrix U a square matrix with only 0’s below its diagonal. (Exceptions: the upper triangular matrix R in

QR decomposition; the orthogonal matrix U in singular value decomposition.)

Table C-1: The nomenclature used

600

C.2 Functions for basic matrix operations
C.2.1 Functions with a scalar output
Entering the functions listed below does not require the use of Ctrl∪Shift∪Enter.

MAbs(R) Absolute value of R ∑
ji

ijm
,

2

MCond(R) Condition number κ of a matrix κ
 computed using singular value decomposition

MpCond(R) –log10 of matrix condition number pκ = –log(κ)
 computed using singular value decomposition

MDet(S [,Int] [,Tiny]) Determinant of a square matrix S det[S]
 Similar to Excel’s =MDETERM(S). Because of rounding errors, both
 MDET and MDETERM can yield (often different) non-zero answers
 For a singular matrix. When all elements of S are integer, and Integer is
 set to True, MDET uses integer mode. Defaults: Integer = False, Tiny = 0.

MRank(R) Rank of a matrix

MTrace(S) Trace of a square matrix tr(S) = ∑
i

iim

C.2.2 Basic matrix functions
Entering the following functions requires the use of Ctrl∪Shift∪Enter

MAdd(R1,R2) Addition of two matrices R1+R2
 equivalent to Excel’s =R1+R2, as in =B2:D5+F2:H5.

MSub(R1,R2) Subtraction of two matrices R1–R2
 Equivalent to Excel’s = R1–R2, as in =B2:D5–F2:H5.

MT(R) Transpose of a matrix RT

 equivalent to Excel’s function TRANSPOSE

MMult(R1,R2) Product of two matrices R1 R2

 Excel’s function is listed here for the sake of completeness

MProd(R1,R2,R3,...) Product of two or more matrices R1R2R3...
 Pay attention to the dimensions, as the function MProd does not check them.

MMultS(R,s) Product of a matrix and a scalar sR = Rs
 equivalent to Excel’s scalar multiplication, as in =3.21*B2:G9.

MPow(S,n) Sn = S S S … S (n terms) Sn

MInv(S [,Int] [,Tiny]) Inverse of S S–1
 similar to Excel’s =MINVERSE(M). Because of rounding errors, both
 M_INV(M) and MINVERSE(M) can yield (different) non-zero element values for a
 singular matrix. When Integer is set to True, integer mode is used. Any result smaller
 in absolute magnitude than Tiny is set to zero. Defaults: Integer = False, Tiny = 0.

MExp(S [,Algo] [,n]) Matrix exponential ∑
∞

=
=

0 !n

n
S

n
Se

 Uses Padé approximation (the default, Algo = “P”), otherwise the power method.
 The default stops when convergence is reached. When n is specified, the resulting
 error can be obtained with =MExpErr(S, n)

MExpErr (S ,n) Error term in matrix exponential

601

C.2.3 Vector functions
ProdScal(v1,v2) Scalar product of two vectors v1 • v2

ProdVect(v1,v2) Vector product of two vectors v1 v2

VectAngle(v1,v2) Angle between two vectors 










⋅
•

21

21arccos
vv
vv

C.3: More sophisticated matrix functions
Diagonal or tridiagonal square matrices occur quite frequently in practical problems. When such matrices

are of high orders, they can take up a large amount of space, even though most of it will be occupied by zeros.
It is then often convenient to store and display m×m diagonal matrices D in compact notation as single m×1
column vectors, and tridiagonal matrices T as m×3 rectangular matrices. A number of special instructions are
provided for this space-saving approach. Don’t confuse compact notation with sparse notation, as used in con-
nection with sparse matrices, see Table C.10.3.

MDetPar(S) Determinant of S containing one symbolic parameter k det[S]
 Used with Ctrl∪Shift∪Enter yields vector,
 otherwise output shown as text string.

MDet3(T) Determinant of T in n×3 format det[T]
 There is no need to use Ctrl∪Shift∪Enter, because the output is a scalar.

MMult3(T,R) Multiplies a tridiagonal matrix in tricolumnar format T R
 with a rectangular or square matrix R, or even a vector v.

MMultTpz (S,v) Multiplies a Toeplitz matrix in compact (columnar) format
 and a vector v. For a Toeplitz matrix of order 2n+1, v must be n×1

MBAB(S1,S2) Similarity transform S1
–1 S2 S1

MBlock(S) Transforms reducible, sparse square matrix into block-partitioned form

MBlockPerm(S) The permutation matrix for MBlock

MDiag(v) Convert vector v into D mii = vi

MDiagExtr(S [,d]) Extract the diagonal of S
 d = 1 for the diagonal, i = j (the default), d = 2 for the first lower subdiagonal, i = j+1.

C.4: Functions for matrix factorization

The terms matrix factorization and matrix decomposition refer to the same operations, in which a given
matrix is expressed as the product of two or more special matrices. This approach is often used to facili-
tate finding the required solution. The differences between the various available approaches reflect their
general applicability, numerical efficiency, tolerance of ill-conditioning, etc.

SVDD(R) Yields D of R = UT D V D
 The central result of singular value decomposition, providing the singular
 values σi as well as easy routes to matrix rank r and condition number κ.
 When R is Hermitian, the σi are the absolute values of its eigenfunctions.
 Note: the traditional symbol U here does not imply an upper triangular matrix.

SVDU(R) Yields U of R = UT D V U

SVDV(R) Yields V of R = UT D V V

MCholesky(S) Cholesky decomposition S = L L–1
 of a symmetric matrix M into a lower triangular square matrix L and its transpose LT

602

MLU(S [,pivot]) LU decomposition into a lower (L) and upper (U) triangular square matrix. S = L U
 The optional pivot (the default) activates partial pivoting

MOrthoGS(R) Modified Gram-Schmidt orthogonalization

MQH(S,v) decomposition of S with vector b S = Q H QT
 Q is orthogonal, H is Hessenberg. If S is symmetric, H is tridiagonal

MQR(R) QR decomposition A = Q R
 Q is orthogonal, R is upper triangular

MHessenberg(S) Converts S into its Hessenberg form H

MChar(S, x) Computes characteristic matrix at real value x
 If x complex, use MCharC(S, z)

MCharPoly(S) Computes characteristic polynomial of S
 Can often be combined with PolyRoots(P)

PolyRoots(P) Finds all roots of a polynomial P

PolyRootsQR(P) Finds all roots of a polynomial P
 using the QR algorithm

MNorm(R or v [,Norm]) Finds the matrix or vector norm For matrix R: Norm: 0 (default) =
Frobenius, 1 = max. abs. column sum, 2 = Euclidian norm, 3 = max. abs. row sum.
For vector v: Norm: 1 = max. sum, 2 = Euclidian norm, 3 (default) = max. abs. value

MPerm(p) generates a permutation matrix from a permutation vector p

MCmp(v) Companion matrix of a monic polynomial P
 where v contains the coefficients of P

MCovar(R) covariance matrix
m

mmmm
c

m

k
avjkjaviki

ij

∑
=

−−
= 1

,,))((

 similar to Excel’s COVAR(ai, aj)

MCorr(R) correlation matrix (i.e., normalized covariance)

∑∑

∑

==

=

−−

−−
=

m

k
avjkj

m

k
aviki

m

k
avjkjaviki

ij

mmmm

mmmmm
r

1
,

1
,

1
,,

)()(

))((

MExtract(R, row, column) Creates a submatrix of R by extracting
 a specified row and column

MMopUp(R [,ErrMin]) Eliminates round-off errors from R
 by replacing by zero all elements |aij| < ErrMin (default 10–15)

MRot(m, theta, p, q) Creates orthogonal matrix of order m that rotates by angle theta in p,q plane
 p ≠ q, p ≤ m, q ≤ m

603

C.5 Eigenvalues & eigenvectors
The German word “eigen” in this context is best translated as “particular to”: eigenvalues and eigenvectors

of a matrix are scalars and vectors that are particular to that matrix. They are only defined for square matrices.

C.5.1: For general square matrices
MEigenvalJacobi(S [,MaxIter]) Jacobi sequence of orthogonality transforms
 MaxIter (default 100) is the max. # of iterations

MEigenvalMax(S [,MaxIter]) Finds maximum |eigenvalue by using the iterative power method
 MaxIter (default 1000) is the max. # of iterations

MEigenvecPow(S [,Norm] [,MaxIter]) Approximates eigenvalues for diagonizable S
 by using the power method. Normalizes eigenvector if Norm = True; default = False
 MaxIter (default 1000) is the max. # of iterations

MEigenvalQR(S) Approximates the eigenvalues of S by QR decomposition
 Yields an n×1 array, or n×2 for complex eigenvalues

MQRIter(S[,MaxIter]) Iterative diagonalization of M to yield its eigenvalues
 based on QR decomposition MaxIter (default = 100) sets the max. # of iterations

MEigenvec(S, eval [,MaxErr]) Computes eigenvector of S for a given eigenvalue(s) in vector eval

MEigenvecInv(S, eval) Computes eigenvectors for a given vector eval by inverse iteration

MEigenvecJacobi(S[,MaxIter]) Orthogonal similarity transforms of a symmetric matrix S
 MaxIter (default = 100) sets the max. # of iterations

MEigenvectMax(S [,Norm] [,MaxIter]) Yields eigenvector for dominant eigenvalue
 (i.e., with max. absolute value). Normalizes eigenvector if Norm = True; default = False

MEigenvecPow(S [,Norm] [,MaxIter]) Yields real eigenvectors for diagonizable S
 using the power method. Normalizes eigenvector if Norm = True; default = False.
 MaxIter (default 1000) is the max. # of iterations

MRotJacobi(S) Jacobi orthogonal rotation of symmetric S

MEigenSortJacobi(eval, evec [,n]) Sorts eigenvectors by value of |eigenvalue|
 Optional n specifies number of eigenvectors shown

MNormalize(R [,Norm] [Tiny]) Normalize real matrix R
 Norm specifies normalizing denominator: 1 = |vmin|,
 2 (default) = |v|, 3 = |vmax|; Tiny default = 2×10–14

C.5.2: For tridiagonal matrices
MEigenvalQL(T [,MaxIter]) Approximates eigenvalues of tridiago nal symmetric matrix
 using the QL algorithm accepts T in either regular or compact format.
 MaxIter (default 200) is the max. # of iterations

MEigenvalTTpz(n, a, b, c) Computes eigenvalues for a tridiagonal
 Toeplitz matrix with elements a, b, c
 All eigenvalues are real if ac > 0, complex if ac < 0

MEigenvecT(T, eigenvalues [,MaxErr]) Approximates eigenvectors for given eigenvalue(s) of T
 Accepts T in either square or compact format

604

C.6 Linear system solvers
Linear system solvers solve a system of simultaneous linear equations in one single user operation. Int =

True uses integer computation, otherwise use False (default). Tiny sets the minimum absolute round-off error
that will be replaced by 0 (default: 10–15).

SysLin (S, x [,Integer] [,Tiny]) Gauss-Jordan solution of linear system
 M is the matrix of independent (control) parameters, x is the unknown coefficient vector or matrix

SysLinIterG (S, x, x0 [,MaxIter] [,w]) Iterative Gauss-Seidel solution of linear system
 using relaxation M is the matrix of independent (control) parameters, x is the unknown
 coefficient vector or matrix, x0 its starting value, MaxIter (default = 200) is the max # of iteration
 (MaxIter = 1 can be used for step-by-step use), w (default = 1) is the relaxation factor

SysLinIterJ (S, x, x0 [,MaxIter] [,w]) Iterative Jacobi solution of linear system
 S is the matrix of independent (control) parameters, x is the unknown
 coefficient vector or matrix, x0 its starting value, MaxIter (default = 200) is the max # of iteration
 (MaxIter = 1 for step-by-step use).

SysLinT (T, x [,Type] [,Tiny]) Solution of triangular linear system
by forward or backward substitution. T is either U (upper) or L (lower) diagonal; the optional

(i.e., unnecessary) Type specifies U or L.

SysLin3 (T3, x [,Integer] [,Tiny]) SysLin for tridiagonal matrix T3
 where T3 is in compact notation

SysLinTpz (S, v) Solves a Toeplitz linear system by Levinson’s method

SysLinSing (S or R [,x] [,MaxErr]) Linear system analysis of a singular system
The matrix can be square (m×m) or rectangular (m×n, where m<n, i.e., for an underdetermined
system). When x is not specified, it is taken as 0. MaxErr (default = 10–13) sets the relative
precision. For degenerate (multiplicitous) eigenvalues a larger error tolerance may be needed,
such as MaxErr = 10–10. A system without solution returns a question mark.

TraLin (R ,X [,B]) Linear transformation ` Y = RX + B
 R is m×n; X is n×p, B is m×p, and Y is m×p. Also works when p = 1, in which case X, B, and Y are vectors.

C.7 Functions for complex matrices

There are many physical phenomena that are best described in terms of matrix algebra with complex rather
than real numbers. For example, the concept of a dielectric permittivity ε of a medium can be extended from
strictly transparent media to (partially or completely) light-absorbing ones by considering ε as a complex quan-
tity. Electrical networks containing phase-shifting components are conveniently described in terms of complex
quantities such as admittance and impedance. Likewise, the linear (i.e., small-amplitude) response of an elec-
trochemical interface is most completely described in terms of Rangarajan’s matrix model (J. Electroanal.
Chem. 55 (1974) 297-374), which includes complex quantities reflecting the time lags of mass transport and
interfacial capacitance. Modern quantum theory uses complex wave functions.

The Excel functions involving complex quantities, as listed in Appendix A.5, only use the character string
format. The matrix operations involving complex functions listed below allow the user, through the optional
instruction parameter c, to select one of three notational formats. These formats are c = 1: split; c = 2: inter-
laced, and c = 3: character string. Figs. C.7.1 and C.7.2 illustrate these for when the real and imaginary com-
ponents are integer or non-integer respectively.

In the split format each complex entity (scalar, vector, matrix) is displayed with its real components, and to
its immediate right with its imaginary components. In the interlaced format, each complex number is repre-
sented in two adjacent cells on the same row. In the text string format, the numbers are displayed as character

605

strings listing both the real and imaginary component, as in the Excel-supplied functions for complex num-
bers. In the latter case, the results may have to be decoded with =IMREAL() or =IMAGINARY(). These three
ways of representing complex numbers are illustrated in Fig. C.7.2. The default mode is 1, the split format.

A B C D E F G H I
1
2 Split format (default)
3 -2 8 0 0 5 7 =MDetC(A3:F5)
4 3 4 6 5 -4 -2 9 -103
5 -2 9 8 6 2 6
6
7 Interlaced format
8 -2 0 8 5 0 7 =MDetC(A8:F10,2)
9 3 5 4 -4 6 -2 9 -103

10 -2 6 9 2 8 6
11
12 Text string format
13 -2 8+5j 7j =MDetC(A13:C15,3)
14 3+5j 4-4j 6-2j 9-103j
15 -2+6j 9+2j 8+6j

Fig C.7.1: The three ways to display complex quantities: (1) “split”, as entire quantities with real and imagi-
nary components, the default mode; (2) “interlaced”, in which each individual element is shown with its two
components adjacent to each other; and (3) “string”, as text strings. The matrix and its determinant contain
only integer and imaginary components, in which case the text string format is often the more compact.

A B C D E F G
1
2 Split format (default)
3 -2.42750 8.17185 0.04820 0 4.53980 6.84630 =MDetC(A3:F5)
4 2.65938 4.07577 6.33463 5.28370 -4.32580 -1.68270 -20.96548 -78.61323
5 -2.36394 9.49214 7.88308 6.49700 2.01150 5.62860
6
7 Interlaced format
8 -2.42750 0 8.17185 4.53980 0.04820 6.84630 =MDetC(A8:F10,2)
9 2.65938 5.28370 4.07577 -4.32580 6.33463 -1.68270 -20.96548 -78.61323

10 -2.36394 6.49700 9.49214 2.01150 7.88308 5.62860
11
12 Text string format
13 -2.4275 8.17185+4.5398j 0.0482+6.8463j =MDetC(A13:C15,3)
14 2.65938+5.2837j 4.07577-4.3258j 6.33463-1.6827j -20.9654787597-78.6132259685j
15 -2.36394+6.497j 9.49214+2.0115j 7.88308+5.6286j

H

Fig C.7.2: The three ways to display complex quantities, when the numbers are not re-
stricted to integers, in which case the text string format may require much wider columns.

MCplx (R1, R2 [,c]) Convert two real matrices M into one complex matrix C C = R1+iR2

MAddC (C1, C2 [,c]) Add two complex matrices C1 + C2

MSubC (C1, C2 [,c]) Subtract two complex matrices C1 + C2

MAbsC (C[,c]) Absolute value of a complex vector

MDetC (C) Determinant of a complex square matrix C Det(C)

MInvC (C [,c]) Invert of a complex square matrix C–1

MMultC (C1, C2 [,c]) Product of two complex matrices C1 C2

MPowC (C1, C2, C3, ... [,c]) Product of two or more complex matrices C1 C2 C3 ...

MMultSC(C, s [,c]) Product of a complex matrix C and scalar s s C = C s

MTC (C [,c]) Transpose of a complex matrix C CT

606

MTH (C [,c]) Hermitian (conjugate, adjoint) transpose of C CH
 = C*T

 = CT*

ProdScaleC (v1, v2) Scalar product of complex vectors v1 • v2

MNormalize (C [,Norm] [,c] [Tiny]) Normalize complex matrix C
 Norm specifies normalizing denominator: 1 = |vmin|,
 2 (default) = |v|, 3 = |vmax|; Tiny default = 2×10–14

MCharC (C, z [,c]) Compute characteristic matrix of C at value z
 M and/or z can be real or complex

MCharPolyC (C, [,c]) Compute the characteristic polynomial

PolyRootsQRC (p, [,c]) Find all roots of a complex vector p of polynomial coefficients
 using the QR algorithm

MEigenvalQRC (C [,c]) Approximates the eigenvalues of a complex square matrix C
 using QR decomposition

MEigenvecC (C [,c]) Compute complex eigenvector of C for given complex eigenvalue(s)

MEigenvecInvC (C, eigenvalues [,c]) Compute eigenvector of C for given eigenvalue(s)
 by inverse iteration

SysLinC (C, x [,c]) Gauss-Jordan solution of complex linear system.
 C: vector or matrix of independent parameters, x: is the unknown coefficient vector or matrix

C.8 Matrix generators
The following is a collection of routines for generating various types of matrices. It starts with the

simplest, the identity matrix, and includes not only a number of named matrices but, also, routines to gen-
erate custom-ordered matrices, such as matrices with a given set of eigenvalues or with a given amount of
sparsity. Often used option: Int = True (default) creates an integer matrix, otherwise use False.

MIde(m) Generates the identity matrix I of order m, i.e., Im×m

MRnd(m [,n] [,Type] [,Int] [,AMax] [,AMin] [,sparse])
Generates a random m×n matrix (default: n = m). Type specifies the type of matrix: All (default) fills
all cells, Sym generates a symmetrical matrix, Dia a diagonal one, Trd a tridiagonal, Tlw a tridiagonal lower,
Tup a tridiagonal upper, and SymTrd a symmetrical tridiagonal matrix. AMax and AMin specify the maxi-
mum and minimum element values. Sparse accepts values from 0 to 1: 0 (default) for filled, 1 for very sparse.

MRndEig(v [,Int]) Creates a random real matrix for a given vector v of eigenvalues
MRndEigSym(v) Creates a symmetrical random real matrix for a given vector v of eigenvalues

MRndRank(m [,Rank] [,Det] [,Int]) Creates a square real matrix with a given value of Rank
 or Determinant. If Rank < m, Det = 0.

MRndSym(m [,Rank] [,Det] [,Int]) Creates a square real symmetrical matrix of dimension m×m
 with a given value of Rank or Determinant. If Rank < m, Det = 0.

MHilbert(m) Creates the m×m Hilbert matrix
 The Hilbert matrix is ill-conditioned; its elements hij = 1/(i+j+1) are shown in decimal form

MHilbertInv(m) Creates the m×m inverse Hilbert matrix
 The elements of the inverse Hilbert matrix are all integer

MHouseholder(x) Creates the Householder matrix of vector x

MTartaglia(m) Creates the m×m Tartaglia (or Pascal) matrix
 Element values: mi1 = m1j = 1; for i > 1, j >1: mij = mi–1,j+mi,j–1
MVandermonde(x) Creates the Vandermonde matrix X
 of vector x, as used in, e.g., the least squares formalism

607

C.9 Miscellaneous functions
C.9.1 Linear least squares routines

RegrL(y, x [,Intercept]) Linear least squares based on svd
Equivalent to post-Excel2002 LinEst. y: N×1 vector of dependent variables, x: N×1 vector or N×m matrix of
independent parameters for the monovariate and multivariate case respectively. Intercept = a0 when specified;
default leaves a0 unspecified. First output column: coefficients ai; 2nd output column: standard deviations si.

RegrP(Order, y, x [,Intercept]) Linear least squares polynomial fit
based on svd, equivalent to post-Excel2002 LinEst. Order is the polynomial order, y the N×1 vector of de-
pendent variables, x the N×1 vector of the independent parameter x. Powers of x are generated internally. In-
tercept = a0 when specified; default leaves a0 unspecified. Output: 1st column: coefficients ai; 2nd column:
standard deviations si.

RegrCir(x, y) Least squares fit to a circle through all points (xi,yi), yields
 radius and x,y coordinates of circle center, with standard deviations

C.9.2 Optimization routine
Simplex(y, constraints [,optimum]) Simplex optimization

y = a0 + a1x1 + a2x2 +..., as 1×m vector of the coefficients a0, a1, a2, ...
constraints: <, >, = ; optimum: 1 (default) maximum, 0 minimum

C.9.3 Step-by-step demonstration
GJStep(S [,Type] [,Integer] [,Tiny]) Step-by-step (didactic) tracing of Gauss-Jordan elimination
 leading to either diagonal (Type = D) or triangular (Type = T) reduction. Integer = True conserves integer
 values, default = False. Tiny sets minimum round-off error; default = 2×10–15. Copy & paste for the next step.

C.9.4 Economic optimization routines
MLeontInv (S,v) Inverts the Leontief matrix encountered in economic input-output analysis

VarimaxIndex (F [,row-norm]) Varimax index for given factor loading matrix F.

 Row-normalization: False (default) or True

VarimaxRot (F [,row-norm] [,MaxErr] [,MaxIter]) Orthogonal rotation of factor loading matrix F
 in Kaiser’s Varimax model.
 Row-normalization: False (default) or True; MaxErr default = 10–4; MaxIter default = 500.

C.9.5 Minimum path routines
PathFloyd(G) Computes the matrix of shortest-path pairs from an adjacency matrix G

PathMin(G) Shows vectors of shortest paths

C.9.6 Routine for electrical circuit admittance
MAdm(B) Creates an admittance matrix from a 3- or 4-column wide branch matrix B
 (two columns for the nodes, and 1 or 2 columns for the admittance of the individual circuit elements

608

C.10: Matrix macros
The Matrix Toolbar provides access to a set of matrix-related macros through three menu headings:

Selector, Generator, and Macros. Below we will briefly describe each one of these.

C.10.1 The Selector tool
The Selector tool can be used to select different parts of a matrix. Start with identifying a matrix

(when that matrix is bordered by empty cells, just clicking on a single cell of that matrix will do), and
then use the choices presented in the Selector dialog box. In other words, click on a cell in a matrix, click
on Selector, click on a choice, such as Triang. low, again click on the Selector, then on the Paster (at the
bottom of the Selector menu), select a starting cell, and click OK. You will see the lower triangular part of
the selected matrix appear, starting at the selected starting cell. The available choices are listed in Table
C.10.1. You can even arrange for diverse output formats through the Target range selector. When you do
not specify a matrix ahead of time, click on Selector, and its dialog box will give you entry to the Selector
choices.

Selector choice Brief description

Full the entire matrix
Triang. low the lower triangle, including the diagonal
Triang. up the upper triangle, including the diagonal
Diag. 1st the (main) diagonal, from top-left to bottom-right
Diag. 2nd the anti-diagonal, running from top-right to bottom-left
Tridiag. 1st the tridiagonal, from top-left to bottom-right
Tridiag. 2nd the anti-tridiagonal, from top-right to bottom-left
Subtriang. low the lower triangle minus the diagonal
Subtriang. up the upper triangle minus the diagonal
Adjoint the matrix minus the row and column of the chosen cell

Table C.10.1: The choices offered in the Selector dialog box.

As its default, the Selector dialog box will copy the selected matrix parts as is, at your option leaving
the unselected cells empty or filling them with zeros. By using its Target range you can also choose dif-
ferent output formats, such as vertical, horizontal, diagonal, transposed, etc. For the Adjoint output, also
set the Target range at Adjoint.

C.10.2 The Generator tool
The Generator tool allows you to create matrices to your specifications. Apart from its four generators

of specific matrices (Hilbert, inverse Hilbert, Tartaglia, and Toeplitz) of user-selectable order, it contains
four random matrix generators, which are marvelous learning and teaching tools, especially when com-
bined with some of the matrix functions described in the earlier sections to monitor their performance.
Table C.10.2 lists the various choices available.

609

Generator choice Brief description

Random generates random matrices of user-selected dimensions, minimum and maximum element values, format
(full, triangular, tridiagonal, integer, symmetric), and numerical resolution.

Rank/Determinant generates random square matrices of user-selected order and determinant (the default, if rank = order) or
rank (if det = 0).

Eigenvalues generates random square matrices with user-selected eigenvalues.
Hilbert generates the Hilbert matrix of given order.
Hilbert inverse generates the inverse Hilbert matrix of given order.
Tartaglia generates the Tartaglia matrix of given order.
Toeplitz generates the Toeplitz matrix of given order.
Sparse generates sparse square matrices of user-selected order, minimum and maximum element values,
 dominance factor, filling factor, and spreading factor. One can specify integer and/or symmetrical
 output, and regular (square) or sparse output display. In the latter case, all non-zero elements mij
 are listed in three adjacent columns as i, j, and mij.

 Table C.10.2: The choices offered in the Generator dialog box.

C.10.3 The Macros tool
The Macros tool provides easy access to a number of macros. Many of these macros duplicate matrix

functions already described in appendices B.2 to B.8, but the sparse matrix operations contains some ad-
ditional features. The choices given in the Macros dialog box are listed in Table B.10.3. Some matrices
can be selected by simply pointing to one cell of that matrix, and by then clicking on the smart selector
icon, labeled with a rectangle. This method works only when the matrix in question is surrounded by
empty cells and/or the spreadsheet border.
Macro choice Brief description

Matrix operations reproduces the most often used matrix functions
Complex matrix operations duplicates many of the functions of section 9.7
Sparse matrix operations applies the most common matrix operations to sparse matrices in sparse matrix format (i.e., in three

adjacent columns: i, j, mij), thereby greatly facilitating handling large sparse matrices on the spread-
sheet. It includes an efficient ADSOR (adaptive successive over-relaxation) Gauss-Seidel method.

Eigen-solving provides eigenvalues, eigenvectors, the characteristic matrix, and the characteristic polynomial for
a square (real, real tridiagonal, complex) matrix

Gauss step-by-step a macro form of GJ_Step
Graph includes Shortest Path and Draw
Methods Clean-up and Round

Table C.10.3: The choices offered in the Macros dialog box.

611

Appendix D
XN extended-precision functions & macros

Here we list the major instructions available at present with XN.xla(m) version 6051. The further
down the list, the sparser the annotations. A more complete listing is available once you have installed
XN.xla(m), and its Toolbar, which can be toggled on and off by clicking on the XN purple book icon fea-
turing an X. Because this software is still developing and growing; whenever information provided here
differs from the documentation provided with your installed version, consider the latter as authoritative.
For a quick guide on the format used, also consult the Paste (Insert) Function window by clicking on its
icon, fx. Note that numbers displayed by Excel are usually stored as their binary approximations; when
they are text strings, they are shown within quotation marks " inside the function argument, or as 'a = .

For the list of available functions click on the Help button of the XN Toolbar, click on Help-on-line,
which will open up the Xnumbers version 6.0 Help file. For the most recent list of functions, which in-
cludes the many recent updates from John Beyers, click on “changes to version 6.0” at the end of its first
paragraph. For the older functions, use its Index of Functions or other items in its Contents. When in
doubt, try them out!

In the list below, items shown within straight brackets [] are optional. The letter D is used as an abbre-
viation for DgtMax; I recommend a value of 35 (roughly quintuple precision) to 50, as usually sufficient
for final 15-decimal accuracy yet still very fast. The value of D = 35 is used here unless otherwise speci-
fied. As long as you avoid degrading its performance by mixing in double-precision operations, XN func-
tions and macros with D = 35 pass all NIST StRD linear and nonlinear least squares tests with flying col-
ors. Whether you will find pE = 15 or ‘merely’ pE ≥ 14 may well depend on how you read in the data
files. When you import test data, and then let a VBA routine read them from Excel, it will read the stored
data, which are binary approximations of the data shown on the screen, see section 11.14. Instead, copy
them literally and place them between quotation marks. In the same vein, be careful with your input ar-
guments. Instead of 1/3 use xDiv(3,10), replace 0.317 by “0.317”, for -2 substitute xNeg(2) or “-2”, etc., e
you may degrade the accuracy of your output.

To change the default D-value, use the XN Toolbar, select X-Edit Configuration, and enter the de-
sired value in the Default digits window. For 32-bit systems, the current D-values range from D ≤ 630 for
XN.xla(m)6051-7A or -7M, to D ≤ 4030 for XN.xla(m)6051-13A or -13M. For best accuracy and speed,
stay at least two packets (14 decimals for –7A and –7M, 26 decimals for –13A and –13M) below the up-
per edges of these ranges. Using a D-value much larger than needed merely slows you down.

D.1 Numerical constants
The brackets are required, even when empty, in which case D assumes its default value, here set to 35.
xPi ([D]) π, the ratio of circumference to diameter of a circle π
 xPi() = 3.1415926535897932384626433832795029 when default D is 35;
 xPi(58) = 3.141592653589793238462643383279502884197169399375105820975;
 xPi(600) = 3.141592653589793238462643383279502884197169399375105820974
 94459230781640628620899862803482534211706798214808651328230664709384
 46095505822317253594081284811174502841027019385211055596446229489549
 30381964428810975665933446128475648233786783165271201909145648566923
 46034861045432664821339360726024914127372458700660631558817488152092
 09628292540917153643678925903600113305305488204665213841469519415116
 09433057270365759591953092186117381932611793105118548074462379962749
 56735188575272489122793818301194912983367336244065664308602139494639
 522473719070217986094370277053921717629317675238467481846766940513.

612

x2Pi([D]) 2π 2π
 xPi(50) = 6.2831853071795864769252867665590057683943387987502;
 xPi(5) = 6.2832; xPi() = 6.2831853071795864769252867665590058.

xPi2 ([D]) π/2 π/2
 xPi2(50) = 1.5707963267948966192313216916397514420985846996876.
xPi4 ([D]) π/4 π/4
 xPi4(50) = 0.78539816339744830961566084581987572104929234984378.
xE ([D]) e, the base of the natural logarithm e
 xE() = 2.7182818284590452353602874713526625 when the default D is 35
xEu ([D]), xGm([D]) γ, Euler’s gamma γ
 xEu(42) = xGm(42) = 0.577215664901532860606512090082402431042159.
xLn2 ([D]) Natural logarithm of 2 ln (2)
 xLn2(50) = 0.69314718055994530941723212145817656807550013436026.
xLn10 ([D]) Natural logarithm of 10 ln (10)
 xLn10(50) = 2.3025850929940456840179914546843642076011014886288.
xRad5 ([D]) Square root of 5 √ (5)
 xRad5(50) = 2.2360679774997896964091736687312762354406183596115.
xRad12 ([D]) Square root of 12 √ (12)
 xRad12(50) = 3.4641016151377545870548926830117447338856105076208.

D.2 Basic mathematical operations
xAbs (a) Absolute value |a|
 Do not enter D in this instruction. xAbs("-1.2345") = 1.2345;
 xAbs("-1234567890.0987654321") = 1234567890.0987654321;
 xCos(xPi()) = -1 so that xAbs(xCos(xPi())) = 1.
xIncr (a) Increment a by 1 a+1
 e.g., xIncr(xPi()) = 4.1415926535897932384626433832795029 and
 xIncr(xPi(28)) = 4.141592653589793238462643383 for (π + 1), where
 xPi([D]) has an optional D, while xIncr(xPi(),28) yields #VALUE!
 because it incorrectly specifies D for xIncr(), which cannot handle it.
xAdd (a, b [,D]) Addition a+b

 e.g., Add(xPi(),xE()) = 5.8598744820488384738229308546321654,
 xAdd(xPi(),xE(),21) = 5.85987448204883847382 for (π + e) with
 35 (the default used here) or 21 decimals respectively.

xSum (A [,D]) Summation of terms in a cell range Σ ai
 Ignores empty cells as well as cells containing text. Example: Place the
 instruction =xPi() in cell B3, =xIncr(B3) in B4, and copy this down to
 B8. In cell B10 then place the instruction =xSum(B3:B8), which will yield
 33.849555921538759430775860299677017. In cell B11 verify that you get
 the same answer with =xAdd(15,xMult(6,xPi())) for (1+2+3+4+5) + 6 π.

xNeg (a) Negation –a
 Do not use –a because it will convert the result to double precision.
 Instead, always use xNeg instead of a minus sign in XN, otherwise you
 will revert to double precision. Using quotation marks surrounding a
 fractional number uses it as shown, xNeg("-1234567890.0987654321") =
 1234567890.0987654321 whereas xNeg(-1234567890.0987654321) =
 1234567890.098759889602661133 uses the value stored by Excel approxi-
 mating the 15-decimal number -1234567890.09876 in binary notation. No
 such distortion (but still truncation to 15 decimals) occurs with integers:
 xNeg(-12345678900987654321) = 123456789009876.

613

xSub (a, b [,D]) Subtraction a–b
 equivalent to xAdd(a, xNeg(b)). Do not use xAdd(a,–b) because the
 notation –b will make the result double precision. Example: (π – e)
 xSub(xPi(),xE()) = 0.4233108251307480031023559119268404. Also:
 xSub("1.000000000000000012345678","1.000000000000000023456789")
 = -1.1111111E-17, with all leading zeroes automatically deleted. And note:
 xSub(1.2345678901234," 1.2345678901234") = 6.9057879591E-17 illus-
 trates the distortion due to decimal-to-binary conversion.

xMult (a, b [,D]) Multiplication a × b
 e.g., xMult(6, Pi()) = 18.849555921538759430775860299677017, and
 xMult(6,Pi(42),42) = 18.849555921538759430775860299677017305183.

xProd (a [,D]) Multiplication of components of a cell range Π ai
 Ignores empty cells as well as cells containing text. The range can be a column,
 a row, or a rectangular array, but not an enumeration of comma-separated cell
 values or cell addresses..

xInv (a) Inversion 1/a
 When a = 0, xInv(a) yields ″?″. Example: 1/9 in 42-decimal precision
 is xInv(9,42) = 0.11

xDiv (a, b [,D]) Division a/b
 or: xMult(a, xInv(b)). When b = 0, xDiv(a,b) yields ″?″.
 xDiv(7,9,42) = 0.7778

xDivInt (a, b) Integer division int (a/b)
 xDivInt(a,0) ″?″. xDivInt(7,9) = 0; xDivInt(13,7) = 1; xDivInt(-13,7) = -2.

xPow (a, p [,D]) Power ap

 where a can be positive or negative, and with integer or noninteger powers p
 xPow(xPi(),xNeg("2.7"),21) = 4.54668999316115830687E-2
 but xPow(xPi(),xNeg(2.7),21) = 4.54668999316115738232E-2; and watch this:
 xPow(xNeg(xPi());xNeg("2.7"),21) = -2.67247732472589436167E-2
 -3.67834947262189055211E-2j because –π–2.7 has a complex root.

xPow2 (p [,D]) Power of 2 2p

 where the power p can be positive or negative, integer or noninteger.
 e.g. xPow2(xNeg("400.3") = 3.1455220629461415507035091262930301E-121;
 xMult(xPow2(xNeg("400.3")),xPow2("400.3"),34) = 1.

xExp (p [,D]) Exponential ep
 xExp(80) = 55406223843935100525711733958316613, xExp(800)
 = 2.7263745721125665673647795463672698E+347 and xExp(800,14)
 = 2.7263745721126E+347. The latter two cannot be read by Excel or reduced
 to double precision, because Excel cannot store numbers beyond E308.

xExpa (p [,a] [,D]) Arbitrary power ap
 Note the unusual argument order: power first, then the value raised to it:
 xExpa(3,7) = 343 = 7^3. When a is unspecified, a = 10: xExpa(3) = 1000;
 xExpa(3,xPi()) = π3 = 31.006276680299820175476315067101396,
 xExpa(xNeg(3),xPi()) = (-π)3 = -3.2251534433199492956082745196133453E-2;

watch the commas: xExpa("3.01",17) = 5054.1863831357180932094218872658106 but
xExpa("3.01",,17) = 1023.2929922807541 and xExpa(3.01,,17) = 1023.2929922807536;

 xExpa(xNeg("3.01")) = 31.363254111413810434877685894955175;
 xExpa(xNeg("3.01"),xNeg(xPi()),21) = (-π)-3.01 = -3.18844465707427014412E-2).

xExpBase (a,ax [,D]) Arbitrary power ax
 Arbitrary power of any base. Similar to xExpa(x,a[,D]) but a not optional.

614

xSqr (a [,D]) Square root of a √ (a)
 xSqr("4.7") = 2.1679483388678799418989624480732099 = √ (4.7),
 xSqr("4.7",50) = 2.167948338867879941898962448073209935826865748722.

xSqrPi (a [,D]) Square root of a times π √ (aπ)
 for a ≥ 0. If a is omitted, a = 1. xSqrPi(,21) = 1.7724538509055160273 = √ π ,
 xSqrPi("4.7",21) = 3.84258838179059041156 = √ (4.7 π) to 21 decimals.
xRoot (a [,b] [,D]) Arbitrary root a1/

b

 b need not be an integer; default: b = 2. xRoot(9) = 3 = √ 2 , as is xRoot(9,2),
 but xRoot(2,9) = 1.0800597388923061698729308312885969, and xRoot(2,,9)
 = 1.41421356; xRoot(78,9) = 1.6226794404526244307856240252218919 = 781/9,
 while xRoot(78,"9.0001") = 1.6226707127436371883687249182251982.

xLn (a [,D]) Natural logarithm ln a
 xLn(11,50) = 2.3978952727983705440619435779651292998217068539374.

xLog (a [,base] [,D]) General logarithm log n a, log a
 Optional base must be positive; default = 10. Analogous to Excel’s LOG(a [,base])

where LOG(4,2) = 2 = log2(4) and LOG(4) = 0.60206.. = log10(4), XN uses
xLog(30,3) = 3.0959032742893846042965675220214013 =log3(30) at Ddefault = 35,
and xLog(30,,35) = xLog(30) = 1.4771212547196624372950279032551153 =log10(30)

D.3 Trigonometric and related operations
All angles are assumed to be in radians. The prefix ar stands for area, the prefix arc for arc.

xSin (α [,D]) Sine sin α
 xSin(0.5,50) = 0.4794255386042030002732879352155713880818033679406;
 xSin(xPi()) = -1.5802830600624894179025055407692184E-35;
 xSin(xPi(46),46) = 3.751058209749445923078164062862089986280348253E-46;
 xSin(xSub(xPi(),0.00000001)) = 1.0000000000000000042558941617530493E-8;
 xSin(xSub(xPi(),"0.00000001")) = 9.9999999999999998333333333175305036E-9.

xCos (α [,D]) Cosine cos α
 xCos("0.5",50) = 0.87758256189037271611628158260382965199164519710974
 and xCos(0.5,50) = 0.87758256189037271611628158260382965199164519710974,
 because 0.5 = ½ is exactly convertible into binary notation, as are 0.75, 0.625, etc.;
 xCos(xPi2(),50) = 4.2098584699687552910487472296153908203143104499314E-35.
 xCos(xPi2(50),50) = -4.7089512527703846091796856895500685982587328941466E-50.

xTan (α [,D]) Tangent tan α
 xTan(0.5,50) = 0.54630248984379051325517946578028538329755172017979.

xASin (a [,D]) Inverse sine arcsin a
 |a| ≤ 1; xASin(1) = 1.5707963267948966192313216916397514;
 xASin(xNeg(1),48) = -1.57079632679489661923132169163975144209858469969.
xACos (a [,D]) Inverse cosine arccos a
 |a| ≤ 1; xACos(0,48) = 1.57079632679489661923132169163975144209858469969.

xATan (a [,D]) Inverse tangent arctan a
 xATan(1,50) = 0.78539816339744830961566084581987572104929234984378.
xATan2 (a, b [,D]) Inverse tangent of quotient a/b arctan (a/b)
 xATan2(3,4,50) = 0.64350110879328438680280922871732263804151059111531;
 note that the order of a and b is reversed from that used in Excel’s ATAN2.
xSinH (a [,D]) Hyperbolic sine sinh a
 sinh a = (ex – e–x) / 2; xSinH(3) = 10.017874927409901898974593619465828.

615

xCosH (a [,D]) Hyperbolic cosine cosh a
 cosh a = (ex + e–x) / 2; xCosH(0.3) = 1.0453385141288604816444546338323457 but
 xCosH(xDiv(3,10)) = xCosH("0.3") = 1.0453385141288604850253090463229121.
xTanH (a [,D]) Hyperbolic tangent tanh a
 tanh a = (ex – e–x) / (ex + e–x); xTanH("0.1",28) = 9.966799462495581711830508368E-2
xASinH (a [,D]) Inverse hyperbolic sine arsinh a
 arsinh a = ln [a+√(a2+1)]; xASinH("0.1",28) = 0.0998340788992075633273031247
xACosH (a [,D]) Inverse hyperbolic cosine arcosh a
 arcosh a = ln [a+√(a2–1)], a > 1;
xATanH (a [,D]) Inverse hyperbolic tangent artanh a
 artanh a = ½ ln [(1+a)/(1–a)]; xATanH(0.1,28) = 0.1003353477310755862429135451;
 xATanH("0.1",28) = 0.1003353477310755806357265521.
xAngleC (a [,D]) Complement of angle α π / 2 – α
 xAngleC(0.25,21) = 1.3207963267948966192313216916397514;
 xSub(xPi2(21),0.25,21) = 1.3207963267948966192313216916397514.
xDegrees (a [,D]) Converts radians into degrees radians→degrees
 xDegrees(xPi4()) = 45; xdegrees(xMult(4,xPi()),28) = 720.
xRadians (a [,D]) Converts degrees into radians degrees→radians
 xRadians(180) = 3.1415926535897932384626433832795029 = xPi()
xAdjPi (a [,D]) Adjusted angle, in radians, between –π and +π
 xAdjPi(xMult(5.75,xPi()),21) = -2.35619449019234492885 = xMult(3,xNeg(xPi4()),21)
xAdj2Pi (a [,D]) Adjusted angle, in radians, between 0 and 2π
 xAdj2Pi(xMult(6.75,xPi()),21) = 2.35619449019234492885 = xMult(3,xPi4(),21)

D.4 Statistical operations
A is an array of numbers ai in a contiguous row, column, or block.

xMean (A [,D]) Mean /n)(
1

∑
=

n

i
ia

 xMean(1,3,4,10) = xMean({1,3,4,10},21) = xMean(C14:C17,21) = 4.5
 when C14:C17 contains 1, 3, 4, and 10 respectively.
xMedian (A) Median
 xMedian(1,3,4,10) = xMean(C14:C17,21) = 3.5 when C14:C17
 contains 1, 3, 4, and 10 respectively. Do not specify D.

xGMean (A [,D]) Geometric mean n
naaa ××× L21

 xGMean({1,3,4,10},21) = xGMean(C14:C17,21) =
 3.30975091964687310503 when C14:C17 contains 1, 3, 4,
 and 10 respectively; A must be an array or a named range.

xHMean (A [,D]) Harmonic mean ∑
=








n

i ia
n

1

1

 xHMean({1,3,4,10},21) = xHMean(C14:C17,21) =
 2.37623762376237623762 when C14:C17 contains 1, 3, 4,
 and 10 respectively; A must be an array or a named range.

616

) xQMean (A [,D]) Quadratic mean (/n
1

2∑
=

n

i
ia

 xQMean({1,3,4,10},21) = xQMean(C14:C17,21) =
 5.61248608016091207838 when C14:C17 contains 1, 3, 4,
 and 10 respectively; A must be an array or a named range.

xStDev (A [,D]) Standard deviation
1

)(2

1

−

−∑
=

n

aa
n

i
avi

 xStDev({3.1,3.2,3.3},21) = xStDev(B3:B5,21) =
 9.99999999999998667732E-2 when B3:B5 contains 3.1, 3.2,
 and 3.3 respectively; xStDev({"3.1","3.2","3.3"},21) = 0.1

xStDevP (A [,D]) Population standard deviation
n

aa
n

i
avi

2

1
)(∑

=
−

 xStDevP({3.1,3.2,3.3},21) = xStDevP(B3:B5,21) =
 0.081649658092772494494 when B3:B5 contains 3.1, 3.2,
 and 3.3 respectively; xStDev({"3.1","3.2","3.3"},21)
 = 8.16496580927726032732E-2.

xVar (A [,D]) (Sample) variance
1

)(2

1

−

−∑
=

n

aa
n

avi
i

 xVar({3.1,3.2,3.3},21) = xVar(B3:B5,21) =
 9.99999999999997335465E-3 when B3:B5 contains 3.1, 3.2,
 and 3.3 respectively; xVar({"3.1","3.2","3.3"},21) = 0.01

xVarP (A [,D]) Population variance
n

aa
n

avi
2

1
)(∑

=
−

i

 xVarP({3.1,3.2,3.3},21) = xVarP(B3:B5,21) =
 6.6666666666666489031E-3 when B3:B5 contains 3.1, 3.2,
 and 3.3 respectively; xVar({"3.1","3.2","3.3"},21)
 = 6.66666666666666666667E-3.
xFact (n [,D]) Factorial n!
 For n a positive integer; if not integer, n is rounded down to the next integer.
 xFact(27) = 10888869450418352160768000000,
 xFact(28) = 3.04888344611713860501504E+29,
 xFact(1E7) = 1.2024234005159034561401534879443076E+65657059,
 xFact(xFact(25)) = 3.5679279579588489448587652949509 ×
 E+384000963322077998379052338.

xFact2 (n [,D]) Double factorial

 n odd: ∏
=

=−=−
n

i
kn

nin
1 2!

)!2()12(!)!12(; n even: (∏
=

==
n

i

knin
1

2!)2(!)!2

 xFact(27) = 10888869450418352160768000000,
 xFact(28) = 3.04888344611713860501504E+29,
 xMult(xFact2(27),xFact2(28)) = 3.04888344611713860501504E+29 = xFact(28).

xComb (n, m [,D]) Binomial coefficient
)!(!

!
mnm

n
m
n

−
=










617

 xComb(20,10) = 184756,
 xComb(200,100) = 9.0548514656103281165404177077484164E+58,
 xComb(2000,1000,45) = 2.048151626989489714335162502980825 04439642489E+600
 or, displayed in its full 600-decimal glory, as xComb(2000,1000, D) with D ≥ 601.

xComb_Big (n, m [,D]) Binomial coefficient for large numbers
)!(!

!
mnm

n
m
n

−
=









 xComb_Big(10000000,9000000,28) = 1.093540446065167765202685186E+1411814

xCorrel (A, B [,D]) Correlation coefficient
BA

AB
AB ss

vr =

 xCorrel({1,2,3,4,5,6},{7,5,8,6,9,7},21) = 0.377964473009227227215;
 xDiv(xCovar(A12:A17,A19:A24),xMult(xStDevP(A12:A17),xStDevP(A19:A24)),21)
 = 0.3779644730092272272145, see (2.10.2), when A12:A17 = {1,2,3,4,5,6} etc.
 xCorrel({1,2,3,4,5,6},{3,4,5,6,7,8},21) = 1. A and B are data sets, addressed
 either as a listing of their individual values (see the above examples) or by
 reference to their spreadsheet addresses ranges. Note: in this book we deal
 with physical laws, and a correlation coefficient rxy ≤ 0.9 is usually
 considered insignificant. However, in the social sciences, where there are
 often many complicating factors, andrxy= 0.9 may be viewed as highly
 significant. It all depends on the context.

xCovar (n, m [,D]) Covariance ∑
=

−−
N

k
avjkjaviki aaaa

N 1
,,,,))((1

 xCovar({1,2,3,4,5,6},{7,5,8,6,9,7}) = 0.83333333333333333333333333333333333,
 xCorrel({1,2,3,4,5,6},{1,2.1,3,4,5,6}) = 0.9997952055948281569160316960045599.
xStatis (A[,D]) Univariate statistical summary of a data range A
 Yields five parameters in row format (deposit the instruction with block-enter):
 number of data N; their mean; sample standard deviation; population standard
 deviation; and autocorrelation with lag 1 = Σ1

n-1{(xi–xav) (xi+1–xav)}/ Σ1
n{(xi–xav)2.

 xStatis({1,2,3,4,5,6},18) = {6, 3.5, 1.87082869338697069, 1.70782512765993306, 0.5}.
xRand ([,D]) Random number between 0 and 1 U(0, 1)
 xRand() = 0.36884713172912601715122290811538286.
xRandD (a,b [,D]) Random number between a and b U(a, b)
 xRandD(4.1,4.3) = 4.1971631407737729339958908101987838.
 Note that a can be smaller or larger than b.
xRandI (a,b [,D]) Random integer between a and b
 xRandI(4.2,-11.3) = -2; a can be smaller or larger than b, and neither needs to be integer.

D.5 Least squares functions
xIntercept (y, x [,D]) Intercept of least squares straight line with y-axis a0
xSlope (y, x [,D]) Slope of least squares straight line a1
xRegLinCoef (y, x [,D] [,intercept]) Least squares coefficients a0 through ap
 y is the vector of n dependent variables; x is the vector of n (or the matrix of n×m)
 independent variables; intercept forces the y-intercept through y = intercept
 for x = 0. The output yields the least squares coefficients, in row format.
xRegLinCov (y, x , coef [,D] [,intercept]) Least squares covariance matrix CM
 y is the vector of n dependent variables, x is the vector of n (or the matrix of n×m)
 independent variables, coef refers to the output of xRegLinCoef, and intercept forces
 the y-intercept through y = intercept for x = 0. The output yields the covariance matrix.

618

xRegLinErr (y, x, coef [,D] [,intercept]) Standard deviations of LS coefficients s0 through sp
 y is the vector of n dependent variables; x is the vector of n (or the matrix of n×m)
 independent variables; and intercept forces the y-intercept through y = intercept
 for x = 0. The output yields the standard deviations of the coefficients, in row format.

xRegLinEval (coef, x [,D]) Evaluating a least squares fit at a specified x-value
 Coef refers to the output of xRegLinCoef, and x is the specific value at which the
 fitting function is to be evaluated.

xRegLinStat (y, x , coef [,D] [,intercept]) More statistical least squares information r2 and sf
 y is the vector of n dependent variables, x is the vector of n (or the matrix of n×m)
 independent variables, coef refers to the output of xRegLinCoef, and intercept forces
 the y-intercept through y = intercept for x = 0. Outputs r2 and sf in row format.
xRegPolyCoef (y, x, degree [,D] [,intercept]) Least squares coefficients a0 through ap
 y is the vector of n dependent variables; x is the vector of n independent variables;
 degree is the highest polynomial order; and intercept forces the y-intercept through
 y = intercept for x = 0. The default, intercept = TRUE, is to include a0 in the analysis.
 In default mode (D = 35), xRegPolyCoef(B3:B84,C3:C84,10) aces the NIST LLS
 test Filip.dat (see exercise 11.13.3) provided that (1) the y-values in B3:B84, and the
 x-values in C3:C84, are in string format, i.e., preceded by an apostrophe, either
 manually or, faster, with the instruction xCStr(xRoundR(number,15)), and (2) the
 output data z are copied with the instruction = xCDbl(xRoundR((address,15))
 where number is an input value read from the spreadsheet, and address an output
 result displayed there. If (1) and/or (2) are disregarded, the output may ‘only’ agree
 to pE = 14.0 instead of to pE = 15. Use a block-enter; the output is in row format.
xRegPolyErr (y, x, degree , coef [,D] [,intercept]) Standard deviations of LS coefficients s0 through sp
 y is the vector of n dependent variables; x is the vector of n independent variables;
 degree is the highest polynomial order; and the optional intercept forces the y-intercept
 through y = intercept for x = 0. Do not forget to enter the coefficients from xRegPolyCoef!

The default, intercept = TRUE, is to include a0 in the analysis. The output yields the
standard deviations s of the coefficients.

xRegPolyStat (y, x,degree , coef [,D] [,intercept]) More statistical least squares information r2 and sf
 y is the vector of n dependent variables; x is the vector of n independent variables;
 degree is the highest polynomial order; and the optional intercept forces the y-intercept

through y = intercept for x = 0. Do not forget to enter the coefficients from xRegPolyCoef! The de-
fault, intercept = TRUE, is to include a0 in the analysis. The output yields r2 and the standard devia-
tions sf of the over-all fit of the model function to the data.

xRegrL (y, x [,D] [,intercept] [,ε] [,tol]) Least squares coefficients obtained by SVD a0 through ap
 This function uses SVD rather than the traditional pseudo-inverse; y is the vector of n
 dependent variables; x is the vector of n (or the matrix of n×m) independent variables;
 and intercept forces the y-intercept through y = intercept for x = 0; ε is the resolution
 (default: 10–D); tol (for tolerance, default: 0) specifies the largest absolute value that
 should be considerd round-off error and therefore can be set to 0 (similar to Tiny).
xRegrLC (y, x [,cf] [,D] [,intercept] [,ε] [,tol]) Least squares coefficients of complex data by SVD

The extension of xRegrL to complex data. cf defines the complex format used;
default = 1 for split format.

D.6 Statistical functions
Note: even though their names have the prefix x, the functions xGamma, xGammaLn, xGammaLog, xGammaQ and
xBeta used to be double precision. John Beyers has now converted them to fully extended precision. If you have used
them earlier in programs that plotted their output, make sure to use them now within an x CDbl() command so that their
outputs will still be read properly by the graph. While Excel’s functions treat numerical strings as numbers,
Excel’s graphs do not recognize such strings as valid input data.

619

xGamma (x [,D]) Gamma function Γ(x)
 Γ(n) = ±∞ for n a non-positive integer, Γ(n) = (n – 1)!, Γ(1/2) = √π.
 xGamma(-101.01,50) = 1.01316813059536869258112405851033723855160984E-158,
 xGamma(0.5,40) = xSqr(xPi(40),40) = 1.772453850905516027298167483341145182798,
 xGamma(1000,50) = 4.0238726007709377354370243392300398571937486421071E+2564.
 xGamma(0.000000001) = 999999999.42278427380593167581398533 for Ddefault = 35.

xGammaLn (x [,D]) Natural logarithm of the gamma function ln Γ(x)
 xGammaLn(0.5,70) = xLn(xGamma(0.5,70),70) = xLn(xSqr(xPi(70),70),70) =
 0.5723649429247000870717136756765293558236474064576557857568115357360689.

xGammaLog (x [,D]) 10-based logarithm of the gamma function log Γ(x)
 xGammaLog(1000,70) = xLog(xGamma(1000,70),,70) = xLog(xFact(999,70),,70) =
 2567.604644222132848771423057804523691677114513162463461310044207289183.

xGammaQ (x1 ,x 2 [,D]) Ratio of two gamma functions Γ(x1)/Γ(x2)

 xGammaQ(0.5,1000,25) = 4.404845845680923991421408E-2565, xGammaQ(0.5,1000,65) =
 xDiv(xGamma(0.5,65),xGamma(1000,65),65) = xDiv(xSqr(xPi(70),70),xFact(999,65),65) =
 4.4048458456809239914214080519445322777708010072456291610680796307E-2568.

xBeta(x,y[,D] Complete Beta function B (x,y) = ∫ −− −
1

0

11)1(dttt yx

 where Β(x, y) = Γ(x) Γ(y) / Γ(x+y), provides an easy check on the function.
 Let B1, B2, etc are cell addresses, then for x = 1.2, y = 3.4 and x+y = 4.6 we have
 B1: xGamma("1.2",50) = 0.91816874239976061064095165518583040068682199965868,
 B2: xGamma("3.4",50) = 2.9812064268103329717913686054439211818356413783808,
 B3: xGamma("4.6",50) = 13.381285870932449355274522094100253203034374722681,
 B4: xDiv(xMult(B1,B2,50),B3,40) = 0.2045581106435018057463802648086835068269,
 finally in B5: xBeta("1.2","3.4") = 0.20455811064350180574638026480868351, and
 xBeta("1.2","3.4",50) = 2.0455811064350180574638026480868350682689657512436E-1.

xZeta (x [,D]) Riemann zeta function ζ(x)
 ζ(x) = 0 for x a negative even integer, ±∞ for x = 1: xZeta(1) = #VALUE!,
 xZeta(-101,50) = -7.2612008803606716303677281510706847232235031164793E+78,
 xZeta(-9,60) = -7.576E-3,
 xZeta(0.999999) = -999999.42275565224980209723357694814, xZeta(0,600)= 0.5,
 xZeta(1.000001) = 1000000.57729800435533, xZeta(50,21) = 1.00000000000000088818
D.7 Statistical distributions

type = 0 or FALSE (default) for the probability density f; type = 1 or TRUE for the corresponding cumulative distribution F.

xNormal (x, µ, σ [,type] [,D]) Normal distribution
πσ

σµσµ
2

)]2/()(exp[),,(
22−−

=
xxf

 Extended-precision version of Excel’s NORMDIST:
 xNormal(-1000,7,0.5,0,40) = 1.354506334060962146056106217684345437524E-880792,
 xNormal(-10,7,0.5,,48)=7.58105280018573627361442359669669459333212880463E-252,
 xNormal(0,7,0.5) = 2.1932131187779426125067829785218123E-43,
 xNormal(10,7,0.5) = xNormal(10,7,0.5,0) = 1.2151765699646570973992615481363651E-8,
 xNormal(45000,7,0.5) = 1.0582474958611311359386964761976518E-1306737131;
 xNormal(-9876,7,0.5,1) = 9.6676869595648374723957510755689408E-84838294,
 xNormal(-10,7,0.5,1,45) = 1.1138987855743793865819505555930236035018809E-253,
 xNormal(3,7,0.5,1) = 6.2209605742717841235159951725881884E-16,
 xNormal(12,7,0.5,1,50) = 0.99999999999999999999999238014697583947393402665675,
 xNormal(14.6,7,0.5,1,50) = 1.

620

xNormalS (z[,type] [,D]) Standard normal distribution
π2

]2/exp[)(
2zzf −

=

 Extended-precision version of NORM.S.DIST of Excel 2010, with zero mean and unit
 st. dev.: xNormalS(-1000,0,16) = xNormal(-1000,,16) = 2.290648437187064E-2171486,
 xNormalS(-10,0) = xNormal(-10,,1) = 7.6945986267064193463390335800418772E-23,
 xNormalS(0,0) = xNormal(0) = 0.39894228040143267793994605993438187,
 xNormalS(10,0) = xNormal(10) = 7.6945986267064193463390335800418772E-23,
 xNormalS(1000,0,21) = xNormal(1000,,21) = 2.29064843718706368675E-217148;
 xNormalS(-1000, 1,21) = 7.0452236580171781353528161610508209E-217586,
 xNormalS(-10, 1) = 7.6198530241605260659733432515993084E-24,
 xNormalS(0, 1) = 0.5, xNormalS(10,1) = 0.99999999999999999999999238014697584,
 xNormalS(1000, ,1) = 1.

xBinomial (k, n, p [,type] [,D]) Binomial distribution
)!(!
)1(!),,(

knk
ppnpnkf

knk

−
−

=
−

 k > 0, n > 0, p ≠ 1; typically, k and n are integer, with k ≤ n, and 0 ≤ p ≤ 1.
 xBinomial(10,8,0.7) = xBinomial(10,8,0.7,0) = 0.3138613877777774857383467859235165,
 xBinomial(100,80,0.7) = 9.276388034479817828650417593685876E-6,
 xBinomial(100,80,0.5) = 8.2718061255302767487140869206996285E-25;
 xBinomial(100,80,0.7,1) = 1.4483734111111107223573231024739338.

xLogistic (x, µ, s [,type] [,D]) Logistic distribution []2/)(exp[1
]/)(exp[),,(
sxs

sxsxf
µ

µµ
−−−

−−
=

 s > 0. xLogistic(1,1,0.5) = xLogistic(1,1,0.5,0) = 0.5,
 xLogistic(0.1,1,0.5) = 0.24345868057417078321107988837114377,
 xLogistic(0.5,1,0.5) = 0.39322386648296370507484946717181805,
 xLogistic(2,1,0.5) = 0.20998717080701303469724836952085072,
 xLogistic(10,1,0.5) = 3.0459958561616145970616505932086991E-8;
 xLogistic(0.1,1,0.5,1) = 2.2648142878370235005474413358600984E-2,
 xLogistic(0.5,1,0.5,1) = 0.14973849934787756480856989948056052,
 xLogistic(1,1,0.5,1) = 0.3807970779778824440597291413023968,
 xLogistic(2,1,0.5,1) = 0.76159415595576488811945828260479359,
 xLogistic(10,1,0.5,1) = 0.88079706274790293129938019689418799.

xLogNorm (x, µ, σ [,type] [,D]) Lognormal distribution
πσ

σµσµ
2

)]2/()(lnexp[),,(
22

x
xxf −−

=

 x > 0. xLogNorm(0.1,1,0.5,,28) = 2.680284603881915428668405659E-9,
 xLogNorm(1,1,0.5,,20) = xLogNorm(1,1,0.5,0,20) = 0.1079819330263761039,
 xLogNorm(10,1,0.5) = 2.6802846038819136119445616856654493E-3;
 xLogNorm(0.01,1,0.5,1) = 1.8139777883515688426389318351031983E-29,
 xLogNorm(1,1,0.5,1) = 2.2750131948179207200282637166533437E-2,
 xLogNorm(50,1,0.5,1) = 0.99999999712801243139612132792027695.

xMaxwell (x, a [,type] [,D]) Maxwell distribution π/4),(32 2

aexaxf ax−=
 Note that different authors define this distribution differently; here we use a = m/2kT
 where m is mass, k is the Boltzmann constant, and T the absolute temperature.

 xMaxwell(0.02,1,,28) = xMaxwell(0.02,1,1,28) = 9.02342324549578354005919324E-4,
 xMaxwell(1,1) = 0.83021499484118940668053649888267473,
 xMaxwell(5,1) = 7.8354332655086676541216841613105858E-10;
 xMaxwell(0.02,1,1) = 6.0165781054863134065267945144474112E-6,
 xMaxwell(1,1,1) = 0.42759329552912016600095238564127189,
 xMaxwell(5,1,1) = 0.99999999992010820755048528860859481.

621

xRayleigh (x, σ [,type] [,D]) Rayleigh distribution 22/ /),(
22

σσ σxxexf −=
 x ≥ 0. xRayleigh(0.01,1,,60) = xRayleigh(0.01,1,0,60) =
 9.99950001249979187740640069032792883187110465298047034833696E-3,
 xRayleigh(1,1) = 0.60653065971263342360379953499118045,
 xRayleigh(10,1) = 1.9287498479639177830173428165270126E-21;
 xRayleigh(0.01,1,1) = 4.9998750020833075000834902025581322E-5,
 xRayleigh(1,1,1) 0.39346934028736657639620046500881955,
 xRayleigh(10,1,1) = 0.99999999999999999999980712501520361.

xWeibull ((x, k, λ [,type] [,D]) Weibull distribution
kx

k

k
exkkxf)/(

1
),,(λ

λ
λ −

−

=

 x ≥ 0. xWeibull(0.01,1,0.5,,60) = xWeibull (0.01,1,0.5,0,60) =
 1.96039734661351060362544885658056190613736410084899623650741,
 xWeibull(1,1,0.5) = 0.27067056647322538378799898994496881,
 xWeibull(10,1,0.5) = 4.122307244877115655931880760311642E-9;
 xWeibull(0.01,1,0.5,1) = 1.9801326693244698187275571709719047E-2,
 xWeibull(1,1,0.5,1) = 0.8646647167633873081060005050275156,
 xWeibull(10,1,0.5,1) = 0.99999999793884637756144217203405962.

D.8 Operations with complex numbers
Use the Configuration dialog box (under the X-Edit button on the XN toolbox) to select either i or j for √(–1). Here we will
use j. Complex numbers will be denoted by z = a + j b, and must be defined in terms of their separate, real and imaginary
components, a and b. The notation has been simplified by allowing single-cell or split formatting of both input and output,
simply by highlighting a single cell or specifying two (horizontally or vertically) adjacent cells, see Fig. 11.12.6. Here we
will use (except for the first three functions) the default (1, horizontally split) format for both input and output. (Note that this
simplified notation applies only to operations on individual complex numbers, as considered in this section; for arrays of
complex numbers this short notation would be ambiguous, and cf must be specified when it differs from the chosen default.)

In B1 we have used =xCplx(3,4) to place 3+4j, and in E1 likewise =xCplx("5.6","7.8") to deposit 5.6+7.8j. The complex
numbers z1 = 3 + 4 j and z2 = 5.6 + 7.8j are stored as strings in row 2: as ′3 in B2, ′4 in C2, ′5.6 in E2, and ′7.8 in F2. They
are also stored as regular spreadsheet numbers in row 3, i.e.,as 3 in B3, as 4 in C3, as 5.6 in E3, and as 7.8 in F3. All exam-
ples will assume D = 35 unless otherwise indicated. Array output in adjacent cells will be shown as separated by a comma,
and must of course be entered with the block enter combination Ctrl∪Shift∪Enter.

xCplx (z [,D]) Converts Re(z) and Im(z) into a complex single-cell format
 xCplx(3,4) = 3+4j; xCplx("5.6","7.8") = 5.6+7.8j

xReal (z [,D]) Real part of a single-cell complex number a = Re(a + jb)
 xReal(xCplx(3,4)) = 3

xImag (z [,D]) Imaginary part of a single-cell complex number b = Im(a + jb)
 xImag(xCplx(3,4)) = 4

xCplxAbs (z [,D]) Absolute value of single-cell format |z| = jba + = 22 ba +
 xCplxAbs(B1) = xCplxAbs(B2:C2) = xCplxAbs(xCplx(3,4)) = 5

xCplxArg (z [,D]) Complex argument arg(z) = arctan(b/a)
 xCplxArg(B1,70) = xCplxArg(B2:C2,70) = xCplxArg(B2:C2,70) =
 0.9272952180016122324285124629224288040570741085722405276218661774403957

xCplxNeg (z [,D]) Negation –z = –(a + j b) = – a – j b
 xCplxNeg(B1) = –3–4j; xCplxNeg(B2:C2) = xCplxNeg(B3:C3) = –3, –4

xCplxConj (z [,D]) Conjugate z* = a – j b
 xCplxConj(B1) = 3–4j; xCplxConj(B2:C2) = xCplxConj(B3:C3) = 3, –4

622

xCplxAdd (z1, z2 [,D]) Addition z1+z2 = (a1 + a2) + j (b1 + b2)
 xCplxAdd(B1,E1) = 8.6+11.8j; xCplxAdd(B2:C2,E2:F2) = 8.6, 11.8;
 xCplxAdd(B3:C3,E3:F3,21) = 8.59999999999999964473, 11.7999999999999998224

xCplxSub (z1, z2 [,D]) Subtraction z1–z2 = (a1 – a2) + j (b1 – b2)
 xCplxSub(B1,E1) = -2.6-3.8j; xCplxSub(B2:C2,E2:F2) = -2.6, -3.8;
 xCplxSub(B3:C3,E3:F3,21) = -2.59999999999999964473, -3.79999999999999982236

xCplxMult (z1, z2 [,D]) Multiplication z1 z2 = (a1a2–b1b2) + j (a1b2+a2b1)
 xCplxMult(B1,E1) = -14.4+45.8j; xCplxMult(2:C2,E2:F2) = -14.4, 45.8;
 xCplxMult(B3:C3,E3:F3,21) = -14.4000000000000003553, 45.799999999999998046

xCplxPow (z, n [,D]) Integer power zn =)]/arctan(exp[22 banba +
 xCplxPow(B1,2) = -7+24j; xCplxPow(B2:C2,2) = xCplxPow(B3:C3,2) = -7, 24

xCplxRoot (z, n [,D]) Integer root z1/n = n jba +
 xCplxRoot(B1,2) = xCplxRoot(B3:C3,2) = 2+j, –2–j; xCplxRoot(E1,2) =
 xCplxRoot(E2:F2,2,21) = 2.75699864955772539922+1.41458175927131251328j in one
 cell, and -2.75699864955772539922-1.41458175927131251328j in the next; likewise,
 xCplxRoot(E3:F3,2,21) = 2.75699864955772533513+1.41458175927131251395j in one
 cell, and -2.75699864955772533513-1.41458175927131251395j in the next.

xCplxSqr (z [,D]) Square root z½ = jb+a
 xCplxSqr(B1) = 2+j; xCplxSqr(B2:C2) = xCplxSqr(B3:C3) = 2, 1
 xCplxSqr(E1,19) = xCplxSqr(E2:F2,19) = 2.756998649557725399, 1.414581759271312513
 xCplxSqr(E2:F2,19) = 2.756998649557725335, 1.414581759271312514

xCplxDiv (z1, z2 [,D]) Division z1/z2 = 2
2

2
2

12212221)()(
ba

babajbbaa
+

+−++

 xCplxDiv(B2:C2,E2:F2,21) = 0.52060737527114967462, -1.08459869848156182213E-2
 xCplxDiv(B3:C3,E3:F3,21) = 0.520607375271149693469, -1.08459869848156286485E-2

 xCplxInv (z [,D]) Inversion 1/z =
jba +

1 = 22 ba
jba

+
−

 xCplxInv(B1) = 0.12-0.16j when placed in one cell; when placed in two cells,
 xCplxInv(B1) = xCplxInv(B2:C2) = xCplxInv(B3:C3)= 0.12, –0.16;
 xCplxInv(E2:F2,21) = 0.060737527114967462039, -8.45986984815618221258E-2
 xCplxInv(E3:F3,21) = 6.07375271149674626325E-2, -8.45986984815618263928E-2

xCplxExp (z [,D]) Exponential ez = ea cos(a) + j eb cos(b)
 xCplxExp(E1,28)=14.59097054392448671115070825+270.0324895489463602631116766j
 xCplxExp(E2:F2,21) = 14.5909705439244867112, 270.032489548946360263
 xCplxExp(E3:F3,21) = 14.5909705439245294948, 270.032489548946261736

xCplxLn (z [,D]) Natural logarithm ln z
 In one cell: xCplxLn(E1,21) = 2.26198006528127407189+0.948125538037829317382j,
 in two: xCplxLn(E1,70) = xCplxLn(E2:F2,70) =
 2.261980065281274071885982930024169450064511264424455256333274238956,
 0.948125538037829317381598341175288215151321283505545372210918578809796;

 xCplxLn(E3:F3,25) = 2.261980065281274035279931, 0.9481255380378293366479415

xCplxLog (z, b [,D]) Logarithm to base b logb (z) = ln(z) / ln(b)
 Careful: xCplxLog(E1,,21) = 0.982365460526814654246+0.411765689321380975201j
 which assumes that the non-specified base is 10, whereas xCplxLog(E1,21) =
 0.74296711932683140068942681618616545+0.3114201184034633742533121651615121j

 for log21(z) with the default number of decimals, here 35. If you need the 10-based log, use:

623

xCplxLog10 (z [,D]) 10-based logarithm log(z) = log10(z) = ln(z) / ln(10)
 In two cells: xCplxLog10(E1,25) = xCplxLog10(E2:F2,70) =
 0.9823654605268146701442103566059571819809685627552493938363525724175293,
 0.4117656893213809668342048131500706165852505219562462786489498073138795;

 xCplxLog10(E3:F3,25) = 0.982365460526814654246404, 0.4117656893213809752014713

xCplxLog2 (z [,D]) 2-based logarithm log2(z) = ln(z) / ln(2)
 xCplxLog2(E2:F2,25)= 3.263347422770987814603177, 1.367856011867356597452088
 xCplxLog2(E3:F3,25) =3.263347422770987761791808, 1.367856011867356625247546

xCplxSin(z [,D]) Sine sin (z)
 xCplxSin(E2:F2,25)= -770.335431725789249221414, 946.4236495468643587804233
 xCplxSin(E3:F4,25)= -770.3354317257894486197362, 946.4236495468639169837239

xCplxCos (z [,D]) Cosine cos (z)
 xCplxCos(E2:F2,25)= 946.4239673233332876174362, 770.3351730737666499652134
 xCplxCos(E3:F4,25)= 946.4239673233328458207013, 770.3351730737668493633767

xCplxTan (z [,D]) Tangent tan (z)
 xCplxTan(E2:F2,24) = -3.2877408328165508373533E-7, 0.999999931837917456442433
 xCplxTan(E3:F4,24) = -3.2877408328165524897145E-7, 0.999999931837917456442642

xCplxASin (z [,D]) Inverse sine arcsin (z)
 xCplxASin(E2:F2,24)= 0.620108349818012666322386, 2.95600293720697536127987
 xCplxASin(E3:F4,24)= 0.620108349818012646903013, 2.95600293720697532483704

xCplxACos (z [,D]) Inverse cosine arccos (z)
 xCplxACos(E2:F2,24)= 0.950687976976883952908935, -2.95600293720697536127987
 xCplxACos(E3:F4,24)= 0.950687976976883972328309, -2.95600293720697532483704

xCplxATan (z [,D]) Inverse tangent arctan (z)
 xCplxATan(E2:F2,24) = 1.50969874144921909210512, 8.44859768081672965961273E-2
 xCplxATan(E3:F4,24) = 1.50969874144921909146551, 8.44859768081673008713949E-2

xCplxSinH (z [,D]) Hyperbolic sine sinh (z)
 xCplxSinH(E2:F2,24) = 7.29538551206624025612712, 135.018091013076278249296
 xCplxSinH(E3:F4,24) = 7.29538551206626164758967, 135.018091013076228986589

xCplxCosH (z [,D]) Hyperbolic cosine cosh (z)
 xCplxCosH(E2:F2,24) = 7.29558503185824645502359, 135.014398535870082013816
 xCplxCosH(E3:F4,24) = 7.29558503185826784721294, 135.014398535870032749833

xCplxTanH(z [,D]) Hyperbolic tangent tanh (z)
 xCplxTanH(E2:F2,24) = 1.00002718952482972149739, 2.94696926173800019499848E-6
 xCplxTanH(E3:F4,24) = 1.00002718952482972151566, 2.94696926173801194879248E-6

xCplxASinH (z [,D]) Inverse hyperbolic sine arsinh (z)
 xCplxASinH(E2:F2,24) = 2.95426910101325167773266, 0.945549735665370431458319
 xCplxASinH(E3:F4,24) = 2.95426910101325164096493, 0.945549735665370450568323

xCplxACosH (z [,D]) Inverse hyperbolic cosine arcosh (z)
 xCplxACosH(E2:F2,24) = 2.95600293720697536127987, 0.950687976976883952908935
 xCplxACosH(E3:F4,24) = 2.95600293720697532483704, 0.950687976976883972328309

xCplxATanH (z [,D]) Inverse hyperbolic tangent artanh (z)
 xCplxATanH(E2:F2,24)=6.03776070460713078765599E-2, 1.48608980485008744950066
 xCplxATanH(E3:F4,24)=6.03776070460713084243571E-2, 1.48608980485008744524278

624

xCplxPolar(z [,D]) Convert to polar z = ρ ejθ
 xCplxPolar(E1,,35) = xCplxPolar(E2:F2,,35) = xCplxPolar(E2:F2) =
 9.60208310732624309126871450256650, 0.94812553803782931738159834117528822
 xCplxPolar(E3:F4,,25) = 9.602083107326242739774361, 0.9481255380378293366479415

xCplxRect (z [,D]) Convert to rectangular z = ρ { cos (θ) + j sin (θ)}
 xCplcRect(xCplxPolar(E1,,35),21) = 5.6, 7.8000000000000000000000000000000001,
 xCplcRect(xCplxPolar(E2:F2,35),21) = 5.6, 7.8000000000000000000000000000000001,
 xCplcRect(xCplxPolar(E3:F3,21),21) = xCplcRect(xCplxPolar(E3:F3,500),21) =
 5.59999999999999964472863212, 7.79999999999999982236431606.

D.9 Matrix and vector operations
D.9.1 Standard operations

We denote vectors as v with elements vi. Matrices are either square real S, rectangular real R or (square or rectangular)
complex C, all with elements mij. cf denotes the complex format used: 1 for split (= default), 2 for interspersed, 3 for Ex-
cel’s string format. The number of rows of a vector or matrix is indicated by r, the number of colums by c. Absolute ele-
ment values mij smaller than ε are set to zero as probable rounding errors; the default value for ε is 1E–D. Noninteger
numbers should be placed between quotation marks when their exact rather than their Excel-stored values are to be used.
We will use the compact matrix notation {m11, m12, …; m21, m22, …; m31, m32, …; …} to denote a matrix with elements
mij where commas separate individual elements in the same row, and semicolons separate different rows. Ddefault = 35.

xMAbs (R [,D]) Absolute value of a real matrix ||R|| = ∑∑
= =

m

i

n

j
jim

1 1

2
,)(

 xMAbs({1,2;"3.1",-4}) = 5.5326304774492214410001161638167525;
 xMAbs({1,2; 3.1,-4}) = 5.5326304774492214907658309046178264

 xMAbsC (C [,cf] [,D]) Absolute value of a complex matrix ||C|| = ∑∑
= =

m

i

n

j
jim

1 1

2
,)(

 xMAbsC({1,2,0,-3; "3.1",-4,-1,0;6,5,2,1}) = 10.325211862233142574713865204941196;
 xMAbsC({1,2,0,-3; 3.1,-4,-1,0; 6,5,2,1}) = 10.325211862233142601380176151460634
xMAdd (R1, R2 [,D]) Addition of two real matrices R1 + R2
 R1 and R2 must have the same size m×n, i.e., c1 = c2 and r1 = r2.
xMAddC (R1, R2 [,cf] [,D]) Addition of two complex matrices R1 + R2
 R1 and R2 must have the same size m×n.
xMSub (R1, R2 [,D]) Subtraction of two real matrices R1 – R2
 R1 and R2 must have the same size m×n.
xMSubC (R1, R2 [,cf] [,D]) Subtraction of two complex matrices R1 – R2
 R1 and R2 must have the same size m×n.
xProdScal (v1, v2 [,D]) Scalar product of two vectors (or matrices) v1 • v2
 v1 and v2 must have the same size m. The scalar product is zero if v1 and v2
 are perpendicular. This function can also be applied to two matrices R1 and R2
 where c1 = r2 in which case xProdScal(R1,R2) yields the product R1

T R2

xProdScalC (v1, v2 [,cf] [,D]) Complex scalar product of two vectors v1 • v2
 v1 and v2 must have the same size m. The scalar product is zero if v1 and v2 are perpendicular.
xProdVect (v1, v2 [,D]) Vector product v1 × v2
 v1 and v2 must have the same size m.
xMMult (R1, R2 [,D]) Multiplication of two real matrices R1 R2
 When R1 is m×p , R2 must be p×n, i.e., c1 = r2.

625

xMMultC (C1, C2 [,cf] [,D]) Multiplication of two complex matrices C1 C2
 When R1 is m×p , R2 must be p×n, i.e., c1 = r2.
xMMultS (R, a [,D]) Multiplication of a real scalar a and a real matrix R a R
 Note the order of terms in the argument: first the matrix R, then the scalar a,
 regardless of the matrix size. aR will have the size of R.
xMMultSC (R, z [,cf] [,D]) Multiplication of a complex scalar z and a complex matrix C z C
 Note he order of terms in the argument: first the matrix C, first, then the scalar z, regardless of
 The matrix size. This order is the reverse of that in the function name. zC will have the size of C.
xMPow (S, n [,D]) Integral power of a square, real matrix S Sn
 n must be a positive integer.
xMPowC (C, n [,cf] [,D]) Integral power of a complex matrix C Cn
 n must be a positive integer.
xMInv (S [,D]) Inversion of a square real matrix S–1
 Uses Gauss-Jordan diagonalization with partial pivoting.
xMInvC (S [,cf] [,D]) Inversion of a square complex matrix C–1
 Uses Gauss-Jordan diagonalization with partial pivoting.
xMDivS (R, a [,D]) Division of a real matrix R by a real scalar a R / a
 Note the order of terms in the argument: first the matrix R, then the scalar a,
 regardless of the matrix size. R / a will have the size of R.
xMPseudoInv (R [,D]) Pseudo-inverse of a rectangular real matrix R+ = V Σ-1 UT
 based on SVD. When R is m×n, R+ is n×m. When R is square and nonsingular, its
 pseudoinverse is equal to its inverse. Uses Gauss-Jordan diagonalization with partial pivoting.

xMPseudoInvC (C [,cf] [,D]) Pseudo-inverse of a complex matrix C+ = V Σ-1 UH
 based on SVD. When R is m×n, R+ is n×m. When R is square and nonsingular, its
 pseudoinverse is equal to its inverse. Uses Gauss-Jordan diagonalization with partial pivoting.
xMExp (S [,n] [,D]) Exponentiation of a square real matrix eS
 Exp(S) = 1 + S + S2/2 + S3/6 + S4/24 + … + Sn/n!
 When n is deleted, the series is continues until it converges.

xMExpC (S [,n] [,cf] [,D]) Exponentiation of a square complex matrix eC
 Exp(S) = 1 + S + S2/2 + S3/6 + S4/24 + … + Sn/n!
 When n is deleted, the series is continues until it converges.

xMExpErr (S ,n [,D]) Error term in xMExp !nnS
 Note that n is required.
xMExpErrC (C ,n [,cf] [,D]) Error term in xMExpC !nnC
 Note that n is required.
xMMopUp (S [,errMin] [,cf] [,D]) Cleans up matrix errors close to zero
 Replaces matrix elements smaller than ErrMin or ε by 0.

D.9.2 More sophisticated matrix operations
xMDet (S [,D]) Determinant of a square real matrix |S|
 Uses Gauss- Jordan diagonalization with partial pivoting. Returns "?" when S is singular.
 xMDet({1,2;"3.1",-4}) = -10.2
 xMDet({1,2; 3.1,-4}) = -10.20000000000000017763568394
xMDetC (C [,D]) Determinant of a square complex matrix |C|
 xMDetC({1,2,0,-3;"3.1",-4,1,7}) = -13.2, 14.3; xMDetC({1,2,0,-3;3.1,-4,1,7}) =
 -13.20000000000000017763568394, 14.30000000000000026645352591

626

xMCond (R [,D]) Condition number of a real matrix κ
 Based on SVD. xMCond({1,2;"3.1",-4}) = 2.6191817659615200272394889923128097;
 xMCond({1,2;3.1,-4}) = 2.6191817659615200292582110124456817

xMCondC (C [Cformat ,D, ε, tol]) Condition number of a complex matrix κ
 Based on SVD. xMCondC({1,2,0,-3;"3.1",-4,1,7},,21) = 4.37608205969300766727,
 4.37608205969300766727; xMCondC({1,2,0,-3; 3.1,-4,1,7},,21) =
 4.37608205969300761817, 4.37608205969300761817
xMpCond (R [Cformat ,D, ε, tol]) –log10 of the condition number of a real matrix –log10 (κ)
 xMpCond({1,2;"3.1",-4}) = -0.41816563863710134091248426474409013;
 xMpCond({1,2; 3.1,-4}) = -0.41816563863710134124721469286252258
xMpCondC (C [Cformat ,D, ε, tol]) –log10 of the condition number of a complex matrix –log10 (κ)

 xMpCondC({1,2,0,-3;"3.1",-4,1,7},,2) = xMpCondC({1,2,0,-3;3.1,-4,1,7},,2) = -0.64

xMNormalize (R [,normtype] [,tiny] [,D]) Normalize a real matrix ∑ 2
ii vv

 Normtype: all nonzero vertical vectors normalized; default = 2 for Euclidean norm.

 R = 
 6

, xMNormalize(R,,,21) = 




 − 54
1.3









− 185420247636339279548.08.0

760212657067733921049.06.0

xMNormalizeC (C [,normtype] [,Cformat] [,tiny] [,D]) Normalize a complex matrix
 Normtype: all nonzero vertical vectors normalized; default = 2 for Euclidean norm.

 C = 
 06

, xMNormalize(R,,,9) = 




 −
−

8954
71.3









−

−
1789352217.0633927955.08.0
06139406135.0773392105.06.0

xMT (R) Transpose a real matrix RT

 R = 
 6

, xMT(R) = 


, do not specify D. 




 − 54
1.3






 − 51.6
43

xMTC (C) Transpose a complex matrix CT

 C = 
 06

, xMTC(C) = , do not specify D. 




 −
−

8954
71.3









−

−
8051.6
9743

xMTH (C) Hermitean (conjugate, adjoint) transpose a complex matrix CH

 C = 
 06

, xMTH(C) = , do not specify D. 




 −
−

8954
71.3









−−
−

8051.6
9743

D.9.3 Matrix decompositions
xMLU (S [,Pivot] [,D]) LU decomposition using Crout’s algorithm L U
 Returns the Lower and Upper triangular matrices that satisfy
 S = L U or, when Pivot is True, S = P L U where P is the permutation
 matrix. If Pivot = False, the first diagonal element of S cannot be zero.
xMCholesky (S [,D]) LL decomposition L LT
 Cholesky decomposition of a square matrix.
xSysLin (A, B [,D]) Solves simultaneous real linear equations X = A–1 B
 Uses the Gauss-Jordan diagonalization; A, X and B must be real; A must be m×m;
 X and B must both be m×1 or m×n. Solves A X = B to yield X = A–1 A X = A–1 B.
xSysLinC (A, B [,D]) Solves simultaneous complex linear equations X = A–1 B
 Equivalent to xSysLin for complex arrays. A, X and B must be complex; A must
 be m×m; X and B must be m×1 or m×n. Solves A X = B to yield X = A–1 A C = A–1 B.
xGaussJordan (M, n, m, Det, Algo, D) Gauss-Jordan elimination

 Uses partial pivoting.

627

xSVDD (R [,D] [,ε]) Matrix Σ from SVD of a real rectangular matrix R Σ
 SVD used in “compact” format; when R is m×n, and p = min(m,n), Σ is p×p.
 ε is the ignored rounding error; default: ε ≤ 1E–D.
xSVDDC (C [,c] [,D] [,ε]) Matrix Σ from SVD of a complex rectangular matrix C Σ
 SVD used in “compact” format; when C is m×n, and p = min(m,n), Σ is p×p.
 Default format: c = 1 (split). ε is the ignored rounding error; default: ε ≤ 1E–D.
xSVDU (R [,D] [,ε]) Matrix U from SVD of a real rectangular matrix R U
 SVD used in “compact” format; when R is m×n, and p = min(m,n), U is n×p.
 ε is the ignored rounding error; default: ε ≤ 1E–D.
xSVDUC (C [,c] [,D] [,ε]) Matrix U from SVD of a complex rectangular matrix C U
 SVD used in “compact” format; when C is m×n, and p = min(m,n), U is n×p.
 Default format: c = 1 (split). ε is the ignored rounding error; default: ε ≤ 1E–D.
xSVDV (R [,D] [,ε]) Matrix V from SVD of a real rectangular matrix R V
 SVD used in “compact” format; when R is m×n, and p = min(m,n), V is m×p.
 ε is the ignored rounding error; default: ε ≤ 1E–D.
xSVDVC (C [,c] [,D] [,ε]) Matrix V from SVD of a complex rectangular matrix C V
 SVD used in “compact” format; when C is m×n, and p = min(m,n), V is m×p.
 Default format: c = 1 (split). ε is the ignored rounding error; default: ε ≤ 1E–D.

D.10 Miscellaneous functions
D.10.1 Manipulating numbers

xCStr (x [,D]) Converts a number x from double precision to string format
 Ignores Ddefault; when D is deleted, as many digits as needed (up to Digits_Limit) are displayed.
 xCStr(1) = 1; xCStr(0.1) = 0.1000000000000000055511151231257827021181583404541015625;
 xCStr(″1.1″) = 1.1; xCStr(1.1) = 1.100000000000000088817841970012523233890533447265625;
 xCStr(″4.1″) = 4.1; xCStr(4.1) = 4.0999999999999996447286321199499070644378662109375.
 When B2 holds the number 4.1, xCStr(B2) = xCStr(4.1), see above, but xCStr(″″&B2&″″) = 4.1,
 i.e., the stored, binary value of x is read unless its spreadsheet value is selected with double quotes.
 D can be used to limit the output: xCStr(B2,20) = xCStr(4.1,20) = 4.0999999999999996447.

xDec (a) Decimal part of number a
 xDec(2.99) = 0.99; xDec(–2.99) = –0.99.
xTrunc (a) Truncation
 xTrunc(2.99) = 2; xTrunc(–2.99) = –2; xTrunc(a) + xDec(a) = a.
xRound (a, [d] [,D]) Round
 Rounds a to d decimal places; default: d = 0. If least significant digit is 5, rounds it away
 from zero. xRound(1.5) = 2; xRound(2.5) = 3; xRound(–1.5) = –2; xRound(–2.5) = –3.
vRoundR (a [,s] [,D]) Relative round

 Uses unbiased (banker’s) relative rounding. Rounds the mantissa of a to s significant
 digits, while leaving its exponent alone. Note: the default (with s unspecified) is 15.

xRoundR (a [,s] [,D]) Relative round
Uses standard rounding to round the mantissa of a to s significant digits,
while leaving its exponent alone. Note: the default (with s unspecified) is 15.

xInt (a) Integer part
 Rounds down: xInt(2.99) = 2; xInt(–2.99) = –3. Warning: in general, for a < 0, xInt(a) + xDec(a) ≠ a.
xComp (a [,b]) Comparison of value of a with b
 xComp(a, b) = 1 for a > b, xComp(a, b) = 0 for a = b,
 xComp(a, b) = –1 for a < b. The default assumes that b = 0.
xComp1 (a) Comparison of absolute value of a with 1
 xComp1(a) = 1 for a > 1, xComp1(a) = 0 for a = 1, xComp1(a) = –1 for a < 1.

628

xDgt (a) Digit count
 xDgt(–2.99) = 3; xDgt(–0.00299) = 6.
xDgtS (a) Significant digit count

 Treats all trailing zeros as not significant: xDgtS(1234000) = 4;
 xDgtS(1.234) = 28 (counting significant digits in corresponding string number);
 xDgtS(“–0.0029900”) = 3; xDgtS(–0.0029900) = 28.

xCDbl (a) Converts from extended to double precision
 Converts an extended precision numerical string into a double precision number.
 Example: xPi() = 3.1415926535897932384626433832795029; xCDbl(xPi()) =
 3.1415927 with up to 15 digits depending on the cell formatting.

x2Dbl (a) Converts from extended to double precision
 Slower but in rare cases more precise version of xCDbl.

D.10.2 Formatting instructions
xFormat (a [,Digit_Sep]) Format
 formats a string ′a in comma-separated groups of Digit_Sep; default: Digit_Sep = 6.
 For a = ′1234567.89012345, xFormat(a) = 1,234567.890123,45 and xFormat(a,3) =
 1,234,567.890,123,45; when a = 1234567.89012345, a spreadsheet number, the result
 will reflect the stored value: xFormat(a) = 1,234,567.890,123,449,964,448,809,624.
xUnformat (a) Unformat
 Removes formatting commas from a
xSplit (a) Splits scientific notation over two cells
 Converts a number into scientific notation, spread over two adjacent cells.
 xSplit(a) = {1.234566999999999941758246258, 89} for a = 1.234567E+89;
 xSplit(a) = {1.234567, 896} for a = 1234567E890 or a = 1234567E+890;
 xSplit(a) = {1.234567, -884} for a = 1234567E-890.
xMantissa (a) Mantissa of a in scientific format
 Yields the mantissa of a numerical string a, e.g., xMantissa(a) = -123.4567 for a =
 ′-1.234567E-890 but -1.23456000000000004997855423 for a = –1.234567E-890.
xExponent (a) Exponent of a in scientific format
 Yields the exponent of a numerical string a or a number in the cell, e.g.,
 xExponend(a) = -890 for either a = –1.234567E-890 or a = ′-1.234567E-890
 because the exponent is always integer.
xCvExp (mant [,exp]) Converts scientific notation into mantissa and exponent
 =xCvExp(-123.456,789) yields -1.234560000000000030695446185E+791, and
 =xCvExp(-0.0000123456,0) generates -1.234559999999999916351148266E-5,
 in both cases showing decimal-to-binary conversion errors. You can avoid these
 by setting exp to zero: =xCvExp("-0.0000123456",0) leads to –1.23456E-5.

D.10.3 Logical functions
x_And (a,b) Boolean logic AND AND(a,b)

 x_And(a,b) = True only when a ≠ 0 (or FALSE) and b ≠ 0 (or FALSE);
 a blank cell does not count as 0 (or FALSE).

x_Or (a,b) Boolean logic OR OR(a,b)
 x_Or(a,b) = True when a ≠ 0 (or FALSE)or b ≠ 0 (or FALSE)or both,
 a blank cell doesn’t count.

x_If (a,b) Boolean logic IF IF()
 x_If(a,b,c) = b when a = 1 or TRUE, x_If(a,b,c) = c when a = 0 or FALSE

x_Not (a) Boolean logic NOT NOT(a)
 x_Not(a) = True when a = 0 (or FALSE). Non-zero numbers and strings evaluate as True.

629

D.10.4 Polynomial functions
xPolyTerms (poly [,D]) Extract the coefficients of a polynomial

 When poly is, e.g., 'x^5-2.1+3*x^3+4*x^2 in cell B2,
 xPolyTerms(B2) = {–2.1, 0, 4, 3, 0, 1}

xPoly (a,coef [,D]) Evaluate a polynomial at x
 When the polynomial is defined by its coefficients coef in, e.g.,
 B4:G4 as {–2.1, 0, 4, 3, 0, 1}, xPoly(3,B4:G4) = –374.3.

xPolyAdd(poly1,poly2 [,D]) Adds two polynomials in x
 The polynomials are poly1 and poly2. Block-enter their coefficients
 in the same order. Missing coefficients will be interpreted as zero.
 If enumerated in the argument, use ,, to indicate a missing coefficient.

xPolySub (poly1,poly2 [,D]) Subtracts two polynomials in x
 The polynomials are poly1 and poly2. Block-enter their coefficients
 in the same order. Missing coefficients will be interpreted as zero.
 If enumerated in the argument, use ,, to indicate a missing coefficient.

xPolyMult (poly1,poly2 [,D]) Multiplies two polynomials in x
 The polynomials are poly1 and poly2. Block-enter their coefficients
 in the same order. Missing coefficients will be interpreted as zero.
 If enumerated in the argument, use ,, to indicate a missing coefficient.
 Assign space in the highlighted area for the higher-order cross-terms.

xPolyDiv (a [,D]) Divides two polynomials in x
 The polynomials are poly1 and poly2. Block-enter their coefficients
 in the same order. Missing coefficients will be interpreted as zero.
 If enumerated in the argument, use ,, to indicate a missing coefficient.

xPolyRem (a [,D]) The remainder of polynomial division
 The polynomials are poly1 and poly2. Block-enter their coefficients
 in the same order. Missing coefficients will be interpreted as zero.
 If enumerated in the argument, use ,, to indicate a missing coefficient.

D.10.5 Integer operations
xPowMod (a,p [,D]) Modular power ap mod m

 Returns the remainder of the integer division ap, i.e., ap – m (ap
 \ m), e.g.,

 xPowMod(10,3,7) = 6 because 103 = 1000 = 142*7 + 6 where 142*7 = 994.
 Useful for finding the remainders of divisions of very large integers, as in
 xPow(12,34567) = 1.1432260930295413791181531725537944E+37304 with
 more than 3700 decimals, yet xPowMod(12,34567,89) = 52. This is the
 remainder of dividing 1234567 by 89 despite the fact that XN-version used,
 XN6051–7A, cannot hold more than 630 decimals.

xDivMod (a, b, m) Modular division (a/b) mod m
 where a and b are integers, and m is a positive prime integer;
 otherwise the function returns “?”. Example: xPow(12,3939393) =
 1.1127850718610753473503619921808241E+4251319, i.e., it is a
 number with more than 4 million digits! While XN cannot perform
 the regular division of such a giant number by the prime number
 3001, it can find xPowMod(12,3939393,3001) = 2758.

D.10.6 Getting (& setting) XN configuration information
Here are a number of functions that allow you to read or “get” configuration settings, and to define or “set”
them. Since each Get function has a corresponding set counterpart, only the former are listed here; these Get
instructions must be followed by empty argument brackets to identify them as functions. A corresponding Set
function must have a replacement value as its argument, and is meant for use within a VBA function or macro.

630

GetDigitsLimit () Specifies the current DigitsLimit
 For XN.xla605 the function =GetDigitsLimit() yields 630, its largest allowed D-value.
GetExcelAppVer () Specifies the current version of Excel used
 For Excel97: =GetExcelAppVer() yields 8, 9 for 2000, 10 for 2002, 11 for 2003,
 12 for 2007, and 14 for 2010.

GetxBase () Specifies the current packet size
 For XN.xla605 the function =GetxBase() yields the value 7.
GetXnArgSep () Specifies the current VBA argument separator
 In the US, =GetXnArgSep() should yield a comma.
GetXnCaseSen () Specifies the current case sensitivity
 If case-insensitive (the default), =GetXnCaseSen() yields FALSE; if case-sensitive, TRUE.
GetXnConfigStatus () Specifies the current configuration settings
 Needs a 19 rows high, 2 columns wide array to list the names and values of all 19 configuration settings.
GetXnDecSep () Specifies the current VBA decimal separator
 In the US, =GetXnDecSep() should yield a period.
GetXnDefaultDigits() Specifies the currently selected default D-value
 For the examples in this table, =GetXnDefaultDigits() should yield 35.
GetXnDefCStr () Specifies the current default value for default Dbl2Str digits
 =GetXnDefCStr() yields 0 for vCStr, 15 to 28 for dCStr, 29 to Digits_Limit for xCStr.
GetXnSMPAdj () Specifies the Digit Max Adjustment of the Simulated Machine Precision
 For 7-digit packets, the recommended value is 2 × 7 = 14 decimals.
GetXnAddAdj () Specifies the current Digit Max Adjustment for xAdd
 The recommended value is 0 decimals for all versions of XN.
GetXnDivAdj () Specifies the current Digit Max Adjustment for xDiv
 The recommended value is 0 decimals for all versions of XN.
GetXnMultAdj () Specifies the current Digit Max Adjustment for xMult
 The recommended value is 2 packets for all versions of XN.

D.11 The Math Parser and related functions
The Math Parser can evaluate many formulas f written in quasi-algebra, as a function of the specified parameter Values. It
thereby brings an aspect of symbolic calculus to numerical computation. Its formulas resemble those in Excel’s VBA, as a
function of the parameter Values. The Math Parser performs two functions: it first “parses” the formula, then evaluates its
value. Its extended precision implementations xEval and xEvall, as implemented by John Beyers, uses the original parser
developed for double precision expressions, but with XN for value evaluation. This can be especially helpful because writing
complicated mathematical expressions in XN can be error-prone, a complication readily avoided by using xEval or xEvall.
The Help-on-Line entry xEval (see the XN Toolbar under Help) gives many clear examples. xEvall uses a sophisticated
search for the value labels which makes it about ten times slower than xEval; its use is therefore not recommended.
xEval(f, Values, [,D] [,Angle] [,Tiny] [,IntSwapFix]) Evaluates quasi-algebraic formulas
xEvall(f, Values, [,D] [,Angle] [,Tiny] [,IntSwapFix]) xEval using top labels if present
 xEval assigns the parameter values in the order in which they are listed under Values.
 D = 0 will use the faster double-precision mode; D = -1 specifies quadruple precision
 in the Variant Decimal mode. Leaving D unspecified will use the value of Default
 Digits specified in the XN Toolbar under X-Edit Configuration.

 Angle provides a choice between the default rad(ians), deg(ree), and grad(s). Tiny
 defines the minimum absolute value that will be considered to be different from zero;
 for the optional IntSwapFix see the Help-on-Line file.

 The formula f and its values can be fully specified in the argument, as in
 xEval("1/x^2+5*x*y+7*sqr(y)",{"2","3"},28) = 42.37435565298214105469212439,
 or the formula and/or its parameter values can be read from specified spreadsheet
 cells, as in =xEval("1/x^2+5*x*y+7*sqr(y)",I2:I3,28) or =xEval(I4,{"2","3"},28 or

631

 =xEval(B4,B2:B3,28), which all give the same result when cell B4 contains the for-
 mula 1/x^2+5*x*y +7*sqr(y), and cells B2 and B3 the values 2 and 3 respectively..

 For further details about the Math Parser see section 8.16 and, especially, the Help-
 on-Line entry on xEval. As described there, several functions can also use its quasi-
 algebraic code, such as the integration functions Integr(), Integr_2D, etc.
 Here are two extended precision functions that use the Math Parser: xGrad and xJacobi.

xGrad (Values, f [,x] [,D] [,Labels]) Gradient of a multivariate function f






















∂∂

∂∂
∂∂

mxf

xf
xf

/

/
/

2

1

M

 Approximates the gradient of a single function f of several variables, by default called
 x, y, z, and t in this order, as evaluated at the parameter Values in that same order, using
 5-point expressions for the derivative. If you want to use other variable name Labels in
 your function, specify them as Labels and count your commas, see below.
 You can specify the Values and the formula for f directly into the expression, as in
 =xGrad({-1,2,3,7},("(x+2*y-3*z^2)/LN(t)")), or read them from the spreadsheet, as
 in =xGrad(B2:B5,B6), when B2:B5 contain the values –1, 2, 3, and 7 respectively,
 and cell B6 the formula (x+2*y-3z^2)/ln(t).

 In both cases you will get





















8047098216141993129955800010.90545659
63409803689008626555124749.25017016-

7018939044649389323697506930.51389834
7018939044649389323697506930.51389834

 Also in both cases, the expression must be written in Math Parser format. The Values,
 either enumerated or taken from B2:B5, must be in the order x,y,z,t. If you use other
 names, e.g., a, b, c, and d, then these must be defined in Labels as
 =xGrad(B2:B55,B6,,,A2:A5) where A2:A5 contains a, b, c, and d respectively.

xJacobian (Values, f, [,x] [,D] [,Labels] [,MaxPrec]) Jacobian of f





















∂∂∂∂∂∂

∂∂∂∂∂∂
∂∂∂∂∂∂

mnnn

m

m

xfxfxf

xfxfxf
xfxfxf

L

MOMM

L

L

21

22212

12111

 Approximates the Jacobian of a vector f of n functions f , each of m variables, by default
 called x, y, z, and t in this order, as evaluated at the parameter Values listed in that same
 order, using 5-point expressions for the derivative. If you want to use other variable name
 Labels in your function, specify them as Labels and keep track of the commas.
 As with xGrad you can specify the Values and the formula for f directly into the expression
 or, as is usually more convenient, read them from the spreadsheet, as in =xGrad(B2:B4,B5:B7),
 where B2:B5 contain the specific Values at which the function formulas (in Math Parser format)
 in B5:B7 must be evaluated:





















∂∂∂∂∂∂

∂∂∂∂∂∂
∂∂∂∂∂∂

=

mnnn

m

m

xfxfxf

xfxfxf
xfxfxf

L

MOMM

L

L

21

22212

12111

J for and x





















=

),...,,(

),...,,(
),...,,(

21

212

211

mn

m

m

xxxf

xxxf
xxxf

M
f .2

1





















=

mx

x
x

M

637

Subject index
Courier font identifies VBA instructons.
Numbers refer to pages; italic numbers indicate
the starting page of section(s) primarily devoted
to that topic. Excel functions are shown in caps,
VBA. Matrix & XN functions in lower case.

A
absolute addressing 2
accumulation errors 533
accuracy 47, 56, 342
 algorithmic 47
 vs. precision viii, 55, 213
acid-base titrations 38, 152, 200
 of acid salt 158
 of diprotic base 200
acknowledgements xi
ActiveCell 349
activity corrections 154
additive color scheme 23
address window 1
adjustable parameters: how many? 104
algorithmic accuracy 47, 529
aliasing 224
aligning a chart to the cell grid 17, 378
AllAddIns folder 5
Analysis Toolpak 4
anova 4
apodizing 232
Application. 34, 39, 50, 360
aqueous solution equilibria 147
argument 35
arithmetic progression ix, 2, 13
ARPREC 544
array 5, 54, 415
 vs. matrix 460
 vs. range viii, 345
Arrhenius
 equation 312
 plot 87
arsenic in tuna fish 214
ASINH 345
assignment symbol 337
assume non-negative in Solver 140
asterisk 2
asymptotic expansion 45
ATAN vs. atn 49
auditing tools 51, 528
augmented matrix 467
autocatalytic reactions 323
automatic scaling in Solver 140
average of repeat data 14, 56

B
backup files 11
bacterial growth 202
band map 26
bat echolocation 298
best fit 120
BigMatrix.xla 8, 545
 add-in macros 545
 installation 6, 8
 Manager 546
big-O notation 412
binomial coefficient 44
bit 343
black body radiation 140
boiling point of water 84, 133
buffer strength 147, 150
buffer value 150

C
calibration curve 77
calling a macro 396
cancellation errors 529
caret 2
case sensitivity 3
cell comment 3, 51, 52, 368
cell drag & drop 11
cell handle 2, 14
cement hardening 118
centering 70, 90
 multivariate 474
 polynomial 476
centered, weighted least squares 86, 127
central differencing 402
 multipoint 404
 of higher-order derivatives 412
 tables 403, 410, 412, 418
chaos 331
chart vs. plot viii, 13
checking
 array dimensions 343
 for data overwrite 376
chemiluminescence decay 160
chevron 4
chi-square distribution 73
chlorophyll spectrum 1675
circular reference 51
van Cittert deconvolution 281
Clausius-Clapeyron equation 84
close button 1
CM (covariance matrix) 68, 77, 104
COBE (COsmic Background Explorer) 140
code debugging 390

638

Cole plot 189
collinearity 84
ColorIndex 358
coloring 358
color maps 22
color palette 358
ColumnSolver 186
comma-delimited 33
comments through N function 3
comparison operators 549
compatibility issues of Excel 2007 547
Compatibility Pack for Office XP/Office 2003 13
compiled code 398
complex matrix operators
 in double precision 455, 489, 495, 506, 587
 in extended numberlength 456, 621
complex numbers 42, 453
compression of data by FT 244
conditional statements 346
condition number 498, 626
Confidence 57, 73
confidence interval 57
confidence limit 57
Const statement 345
constrained nonlinear least squares 169
continuously stirred reactor 323
contour map 24
control loops 348
control variable 57
convolution 259
 by FT 259
 defined mathematically 262
 of a simulated fluorescence decay 265
 of Gaussian peaks 266, 271, 291
 symbol ⊗ ix
 theorem in FT 270
convoluting integers 122
Convolve macro 262
ConvolveFT 271
copying 2
 files and graphs 32
 to the Clipboard 7
copyright credits xii
correlation between what and what? 71
correlation coefficients 70, 90
cosmic microwave background 140
covariance 68
covariance matrix 68, 77, 104
cowboy hat 21
CP29 spectrum 168
cubic spline 444, 469
CurrentRegion 351
custom function or subroutine 35, 308, 335

D
Data Analysis Toolpak 4
data array 43
data compression
 by FT 244
 of fluorescence spectra 246
data input 348
 with input boxes 352
data
 output 353
 overwrite, check for 376
 reduction 55
 sampler 4
 transformation 126
 types 344
 validation 51
Davies equation 155
debugging
 commands 390
 tools 391
 toolbar 392
Debug.Print 337, 391
Debye- Hückel formula 155
Decimal (quadruple precision) mode 544
 XN.xla quadruple precision functions 545
decomposition vs.
 deconvolution 266
deconstruction an address 361
deconvolution 259
 by FT 273
 by parameterization 291
 Grinvald-Steinberg 289
 symbol ∅ ix
 vs. decomposition 266
 van Cittert 281
 with Solver 289
dedication vi
Def statements 345
default 1
default settings 10
define chart format 11
define name dialog box 3
Deleted Esophageal Cancer 33
dependent variable 57
Deriv1 421
differentiation
 by differencing 401
 by FT 237
 by polynomial fitting 123
 of experimental data 425
dimensioning 335, 343
Do … Loop 46, 347

 639

exponentiation vs. negation 49 double precision

 Matrix.la add-in matrix functions 582
 XN.xla(m) add-in functions & macros 538
drag & drop 11
driver macro 374
dynamic named range 3

E
echolocation pulse 298
economic optimization routines 607
edit in cell 11
editing tools in VBA 386
eigenvalue decomposition 495
eigenvalue & eigenvector operations 603
electrical circuit analysis routine 607
ELS 123
embedding in Word 32
engineering functions 587
entering data 33
enzyme kinetics 130, 178
equation parser 365
equidistant data, least squares of 122
equivalence volume 159
ERF 536
ERFC 45
error 55
error bars 15
error function 536
error function complement (erfc) 45
error messages 35, 588
error propagation 66
error recovery 389
error surface vii, 84, 183
error trapping 388
ethanol analysis
 by gas chromatography 110
 by Raman spectrometry 113
Euler-Maclaurin error estimates 427, 431, 435
Euler’s integration method
 explicit 301
 implicit 307
 semi-implicit 306
Euler’s rule 217
even function 218
Excel 2007
 inserting a toolbar 12
 transitioning to 12
Excel vs. VBA 49
explicit (Option Explicit) 46, 335
explicit Euler integration 301
exponential decay 128
exponential error function complement 45
exponentiation 2

extended numberlength 544, 545, 547, 615
extrapolation 75, 180
extreme parameter values 315

F
factorials 10, 36, 45
false minima 181
figurate numbers 481
Filip.dat 480, 505, 578
fill a row or column 2
filtering 230, 259
 in FT 230
 time-dependent 259
FINV 73, 106
Fisher function 73, 106
fitting data
 piecewise 177
 through fixed points 169
 lines through a common point 169
 to a discontinuous curve 175
 to a Lorentzian 132, 179
 to a multicomponent spectrum 103, 165
 to a multivariate function 99
 to an exponential decay 128
 to a parabola 94
 to a polynomial 93, 104
 to a proportionality 57
 to a straight line 64
 to interrelated sets of curves 173
 to intersecting straight lines 81
 to intersecting parabolas 97
 to multiple peaks 162
 to multiple curves 173
 to parallel lines 169
fluorescence decay 263, 289
For Each … Next 339, 348
formatting functions 628
formula toolbar 1
formula window 1
For … Next 38, 340, 348
ForwardFT 218
forward slash 2
Fourier transformation 217, 371
 conventions used 256
 discrete FT 255
 2-D FFT 354
Frobenius norm 491
FT (de)convolution 269, 273
F-test 4, 106
function evaluation in XN 630
function key 2
functions viii, 2, 35, 37, 482, 528, 547, 599, 611

640

G
Gabor macro 296
Gabor transformation 295
Galton 61
gas-chromatographic ethanol analysis 110
Gauss elimination 466
Gaussian distribution 55, 73, 103
Gaussian noise 14
Gaussian peaks
 convolution of 291
 vs. Lorentzian peaks 181
Gauss-Jordan elimination 467, 607
general least squares fit
 for a complex quantity 189
 to a straight line 186
General Public License 6
generator tool 608
Gibbs phenomenon 286
global minimum 181
global weights 126, 189
 tables of global weights 128
glow-in-the-dark toys 160
GNU General Public License 6
Goal Seek 213
good graphing practices 18
good spreadsheet practices 50, 525
GoTo 348
GradeBySf macro 119
gradient of multivariate function 631
Gram polynomials 107, 111, 122
Gram-Schmidt orthogonalization 108
Gran plot 40
graph
 guidelines for good graphs 18
 inserts 18
 specifications 378
 2-D 13
 3-D 19
gridline control 11
Grinvald-Steinberg deconvolution 289
guidelines for good graphs 18

H
Hadamard transform 256
Hamming window 231
handle 2, 26
Hanes plot 130, 178
von Hann window 231
harmonic oscillator 95
Hartley transform 257
H

35Cl infrared analysis 100
heat evolution in cement hardening 118

Heisenberg uncertainty 224, 273
help files 5
Hermitean matrix 491, 599, 626
hidden links 51
Hilbert matrix 515, 598
hotkey x, 1
hydrochloric acid infrared spectrum 100

I
ideal gas law 75
IEEE-754 protocol 6, 416, 543
If and Iff 49, 346
Iff 49, 346
If … Then 346
If statements and Solver 291
ill-conditioned matrix 489
Immediate Window 337, 391, 420
Impedance plot 189
implicit Euler integration 307
importing data 33, 51
 and their possible corruption 33
through Notepad 33, 34
IMEP (Iinternational Measurement
 Evaluation Programme) 211
importing graphs into Word 33
imprecision
 band 71
 contours 71, 109
 in linear extrapolation 75
 measures 58
 of the imprecision 73
independent variable 57
infrared spectrum of H 35Cl 100
initializing 39, 46
in-phase component 218
input box 352
 type designations 352
inserting
 a cell comment 3
 a macro in the Tools menu 9
 a chart 12
 a VBA module 7
 a toolbar 7, 12, 381
 a toolbar in Excel2007 12
 an additional Worksheet 26
 columns and/or rows 15
inserts in graphs 17
installation requirements 5, 590
integer operations 629
integration
 and chaos 331
 explicit Euler method 301
 of ordinary differential equations 301

641

 semi-implicit Euler method 306
 implicit Euler method 307
 multivariable 438
 of experimental data 439
 Romberg midpoint 434
 Romberg trapezoidal 431
 Romberg-Kahan 437
 Runge-Kutta method 316, 320
 stability 328
 trapezoidal 426
intersection
 of straight lines 81
 of parabolas 97
intercept 65
interdependent variables 67
interpolation 41, 440
 cubic spline 444, 469
 by continued fractions 448
 by Fourier transformation 242
 in contour maps 24
 inverse 185
 Lagrange 37, 443
 of noisy data 450
 polynomial 37
intersection
 of two parabolas 97
 of two straight lines 81
invasive sampling 363
InverseFT 218
inverse hyperbolic sine 534
inverse interpolation 77, 185
iodine
 vapor-phase spectrum 95
 potential energy vs. distance profile 143
ionic equilibrium 147
irreversible changes 33, 526
isokinetic relationship 88
Isol.xls 24
 downloading 6
iteration results shown in Solver 140
iterative deconvolution
 with the van Cittert method 281
 with Solver 289
IUPAC pH recommendation 156

J
Jacobian 631

L
Lagrange interpolation 37
Landolt clock reaction 323
lateral differencing 410
leakage 227

least squares
 by singular value decomposition 501, 567
 for equidistant data 122
 general 186, 189
 linear 55, 93
 multivariate 99
 nonlinear 139
 traditional formalism 471
 weighted 126
Lennard-Jones curve 145
Levenberg-Marquardt optimization 6, 205
linear correlation 88
linear correlation coefficients 60, 70, 137
linear extrapolation 75, 180
linear least squares 55, 93
 matrix formalism 471
 routines 55, 93, 607, 617
linear system solvers 604
line chart vs. XY plot 19
line continuation 310
LinEst 34, 49, 59
Lineweaver-Burk plot 130, 178
linking & embedding 32
linking symbol ∪ ix
ln vs. log 49
Locals Window 393
LogEst 129
log vs. ln 49
logical operators 628
Lorentzian peak fitting 132, 179
Lotka oscillator 323, 326, 327
LRE 400
LS 37, 63.
LSPoly 107
luminescence decay 160
lutein spectrum 167

M
macro 36, 335
 vs. subroutine viii, 36
MacroBundle 5, 591
 installation 5
MacroMorsels 337, 594
 installation 6, 7
Macro Recorder 387
Maple add-in for Excel 10
Mapper 22
 modifying the BitMap 382
maps
 band 26, 384
 color 22
 contour 24
Match 39

642

Mathematica link for Excel 10
MathParser 6, 365, 630
matrix
 addition 461
 augmented 467
 complex 482, 604
 decomposition 495, 498, 601, 626
 diagonal 464
 custom functions 511
 eigenvalues 489
 eigenvectors 489
 elimination 466
 factorization 495, 498, 601, 626
 functions 624
 generators 608
 Hermitean 491, 599, 626
 Hilbert 515
 inversion 462, 485
 macros tool 609
 multiplication 462
 nomenclature 599
 operations
 in Excel 43, 459, 588
 in Matrix.xla 657
 in extended numberlength 545, 635
 partitioning 506
 rank 498
 subtraction 461
 symmetrical 470
 Tartaglia 514
 testing 514
 Toeplitz 470
 transposition 461
 triangular 465
 tridiagonal 470
 unit(ary) 463
 Vandermonde 517
matrix selector tool 608
Matrix.xla 6
 installation 8
 list of functions 483
maximize button 1
mean
 of repeat measurements 56
medicinal solutions: shelf life 311
menu bar 1
mercury in tuna fish 211
Mersenne twister 49
message box 353
 buttons 353
 text formatting characters 353
Mexican hat 21
Microsoft KnowledgeBase 49

microwave background radiation 140
minimize button 1
minimum path routines 607
mismatches between Excel and
 VBA 49
mixture analysis 103
module 7, 25, 35, 335, 403
Morse curve 144
movies 30
moving polynomial fit 122
MPFUN 544
multi-component analysis 103, 165
multiplication 2
multivariate
 centering 474
 data fitting 99
 linear least squares 99

N
NAG Statistical Add-Ins for Excel 10
Numerical Algorithm Group 10
NAG 10
name box 2
name manager dialog box 3
named cells and ranges 2, 51
negation vs. exponentiation 49
new name box 3
Newton-Raphson method 213
N-function 3
NIST Statistical Reference
 Datasets (StRD) 47, 203, 480, 579
nonlinear least squares 139
 with constraints 169
non-negative, in Solver 140
NormDist 103
Notepad 33, 245
numerical constants 611
numerical differentiation vii, 401, 425
numerical integration
 of data 439
 of functions 515
 of ordinary differential equations 301
Nyquist theorem 225

O
Object Browser 5, 387
Object Model 5
odd function 218
office button 1
Offset 338
operators
 comparison 627
 eigenvalue & eigenvector 489

643

operators (cont’d)
 for complex numbers 453, 587
 for complex matrices 604, 621
 logical 628
 matrix 459, 588, 599, 624
 string 585
 trigonometric 587, 614
Optimiz.xla 6, 205, 583
 installation 6, 8, 206
optimization
 economic 607
 Levenberg-Marquardt 205, 583
 simplex 607
Option Base 344
Option Explicit 46, 335
Ortho 107
orthogonal polynomials 107
oscillator, Lotka 323, 326, 327
oscillatory data fits 136
out-of-phase component 218
overdetermined system of equations 471
overwriting data, check for 376

P
parabola, fitting data to a 94
parameter vs. variable viii
parameterizing a spectrum 165
parameterizing deconvolution 291
parsimony principle 114, 225
Pascal (= Tartaglia) matrix 514
Pascal triangle 481
pdf (portable document format) 32
pE 399
pE vs. pδ plots for central differencing 419
penny weight 136
Personal Macro Workbook 7
Personal.xls 7
pH calculation 148
phantom relations 87
phase diagram of Lotka oscillator 326
phosphorescence decay 160
pit map 84, 183
pixellation 26, 33
Planck equation 140
plot vs. chart viii, 13
polynomial centering 476
polynomial fitting 93
polynomial functions 629
potential-distance profile 143
potentiometric titration 39, 158, 200
power spectrum 233
precedence of negation vs. exponentiation 49
preface vii

precision 48
 of the standard deviation 73
 vs. accuracy viii, 55, 213
PrintScreen 33
priority of exponentiation vs. negation 49
Private Function 34
progress curve 152
 of a diprotic base with a strong monoprotic
acid 200
 of an acid salt with a strong monoprotic base
158
 of a triprotic acid with a strong monoprotic
base 153
Propagation 66, 70
propagation of imprecision 66, 67, 70, 369
proportionality 57
proton excess 16, 40
proton function 147
 for monoprotic acid 147
 for diprotic acid 148
 for triprotic acid 148
 for strong monoprotic base 147
pseudo-inverse of a matrix 473, 502, 625

Q
quadratic formula 531
quadrature component 218
quadruple precision 621
Quick Access Toolbar 3, 11
Quick Watch Window 393

R
R, links to 9
Raman spectrometry of ethanol 113
random number generator 4, 14, 41
Random_Plot.xls 6, 21, 28
 downloading 6
rand vs. rnd 49
range 3, 14, 345
 name 2
 vs. array viii, 345
RC filter 259
Rcmdr 10
reaction rate
 isothermal analysis 191
 nonisothermal analysis 311
 simulation 190, 301
reconstructing equations 364
recording a macro 387
recursive function 36
redimensioning 43, 344
ReDim Preserve 344
regression fallacy 62

644

Regression macro 34, 60
relative addressing 2
relative standard deviation 73
repeat measurements 56
reproducibility 57
residual 56
Resize 346
resolution vs. deconvolution 266
resolving multiple peaks 162
response variable 57
reversed axis 14
RExcel add-in 10
RGB color scheme 23, 359
Ribbons 1
ribbon tabs 1
riboflavin decomposition 311
rnd vs. rand 49
Romberg-Kahan integration 437
Romberg macro 432
Romberg midpoint integration 434
Romberg trapezoidal integration 431
Rosenbrock function 21, 27
rotating a 3-D graph 19
round in Excel vs. VBA 49
rounding 450
Runge-Kutta integration 316, 320, 331, 333
run-time errors 341

S
SampleData installation 6
SampleFunctionsAndMacros
 installation 6, 7
sample mean 56
sampling
 in FT 224
 invasive 363
sampling theorem 225
ScanF macro 183
scatter plot 11
Schroedinger equation 490
ScreenUpdating 357
scroll bar 1
Search 8
search grid 183
second(ary) axis 14, 16
Select Case 347
Selection 336, 345, 349
Selector tool 608
semi-implicit Euler integration 306,331
septin protein 33
sgn vs. sign 49
shading in 3-D graphs 20
sheet tabs 1

shelf life of medicinal solutions 311
shortcut key-codes 396, 589
show iteration results in Solver 139
sign vs. sgn 49
signal-to-noise ratio 234
simplex optimization 607
Simpson’s formula 431
simultaneous equations, solving 464
singular matrix 464
singular value decomposition 498, 601, 627
 and linear least squares 501
slope 65
smoothing
 of data 450
 of a line or curve in a graph 14
Solver 4, 48, 139
 assume non-negative 140
 automatic scaling 139
 calling as a subroutine 4
 for parameterizing spectra 165
 for iterative deconvolution 289
 how good is it? 203
 installation 4
 show iteration results 140
 vs. Levenberg-Marquardt 6, 201
Solver.xla installation 4
SolverAid 139
Solver 4
Solver add-in 4
SolverScan 4, 183
Solver.xla 4
sonogram 296
spectator ions 147
spectral mixture analysis 929
spectrum
 of hydrochloric acid 100
 of iodine 95
 of mixtures 103
split window panes 51
spreadsheet
 auditing 528
 button 396
 organization 527
sqr vs. sqrt 49
SSR, sum of squares of the residuals 60, 65
stable solution 307, 328
standard addition 79
standard deviation
 and cancellation errors 530
 criteria based on it 105
 of a repeat measurement 56
 of the over-all fit 58
 precision (of the st. dev.) 73

standard toolbar 1
start button 1
statistical distributions 73, 619
statistical functions 615, 618
statistical significance 74, 105
status toolbar 1
StatusBar 357
stenosis 231
step-by-step Gauss-Jordan demonstration 607
stiff system of differential equations 333

stochastic phenomena 55
string operator 585
Student t 73, 105, 355
subroutine 34, 335
 vs. function viii, 35
 vs. macro viii, 36
subtractive color scheme 23
SumXMY2 3, 125
suppressing screen updating 356
surface maps 22

SVD
 498, 501, 601,627
symbolic mathematics 10

T
tab-delimited 33
Tartaglia matrix 514
task bar 1
Taylor series expansion 402
text box 3, 15
text formatting characters 354
Text Import Wizard 33
three-dimensional graphs 19
tidal analysis 246
time-dependent filtering 259
time-frequency analysis
timing of procedures 356
TInv 73, 355
Tiny 483
title bar 1
titration curve 152
 activity-corrected 154
 of a diprotic base with a strong monoprotic
acid 200
 of an acid salt with a strong monoprotic base
158
 of a triprotic acid with a strong monoprotic
base 153
Toeplitz matrix 470
toolbars 1, 11, 381
 customizing 11
 debugging 392
 in Excel 2007 12
 inserting 381
 inserting in , , 12
 Quick Access toolbar 12
ToolPak 4
transfer function 261, 270
transforming variables 109, 126
transitioning to Excel 2007 12
Trapez macros 428
Trendline 64
trigonometric & related operations 587

 in extended numberlength 614
trouble-shooting in VBA 353
truncation errors 402, 450
truncating 450
tryptophan fluorescence spectrum 245
t-test 4, 73, 105, 355
Tukey window 232
tuned FT filtering 231
two-dimensional graphs 13
Type of input box data 352

U
uncertainty principle in finite FT 229
unfiltering 266
use automatic scaling in Solver 139
UserForms 7
US penny weight 136

V
van Cittert deconvolution 281
VanderMonde matrix 517
van de Waals equation 25
vapor-phase spectrum
 of hydrochloric acid 100
 of iodine 95
vapor pressure of water 133
variable star 201
variable vs. parameter viii
variance
 of repeat measurements 56
 of fitting data to a line 65
variance-covariance matrix 87
Variant data type 43,
VBA 4, 9, 22, 31, 34, 42, 49, 53, 335
 editing tools 386
 help file 5
 vs. Excel 49
vector functions 601
vibrational spectroscopy 95
viscosity data 199
vitamin B2 decomposition 311
Volatile 5

 645

W
Watch Window 393
water
 boiling point 84, 133
 vapor pressure 133
website of John & Steve Beyers: http : // www.
 thetropicalevents.com/Xnumbers60.htm

website of Leonardo Volpi: digilander.
 libero.it/foxes/SoftwareDownloads.htm

website of this book: www.bowdoin. edu /
 ~rdelevie/excellaneous
weighted least squares 126
 limitations 179
weight/height ratio 177
weights of US pennies 136
Wiener filter 234
 with FT deconvolution 277
window functions 231
WLS 127
Work

X
sheetFunction. 39, 360

xanthophyll spectrum 167
XN.xla(m) vii, ix, 547, 611
 configuration 629
 direct use on spreadsheet 554
 extended-precision functions 547
 table 549
 installation 6, 8
 rules 581
 table of XN functions 549, 611
 use in custom routines 563
XN toolbar 9
xnLS 567
 Tested against NIST StRD 579
Xnumbers.dll vii, ix, 9
xpE function 580
XY plot 11, 14, 18

Z
zero filling in FT 242

 638

	Appendix C
	Entering the functions listed below does not require the use of Ctrl(Shift(Enter.
	Entering the following functions requires the use of Ctrl(Shift(Enter
	VectAngle(v1,v2)Angle between two vectors
	Diagonal or tridiagonal square matrices occur quite frequently in practical problems. When such matrices are of high orders, they can take up a large amount of space, even though most of it will be occupied by zeros. It is then often convenient to store
	The Matrix Toolbar provides access to a set of matrix-related macros through three menu headings: Selector, Generator, and Macros. Below we will briefly describe each one of these.
	The Selector tool can be used to select different parts of a matrix. Start with identifying a matrix (when that matrix is bordered by empty cells, just clicking on a single cell of that matrix will do), and then use the choices presented in the Selecto
	Selector choiceBrief description
	Fullthe entire matrix
	Diag. 2ndthe anti-diagonal, running from top-right to bottom-left
	Tridiag. 1stthe tridiagonal, from top-left to bottom-right
	Tridiag. 2ndthe anti-tridiagonal, from top-right to bottom-left
	Subtriang. lowthe lower triangle minus the diagonal
	Subtriang. upthe upper triangle minus the diagonal
	Adjointthe matrix minus the row and column of the chosen cell
	Table C.10.1: The choices offered in the Selector dialog box.
	As its default, the Selector dialog box will copy the selected matrix parts as is, at your option leaving the unselected cells empty or filling them with zeros. By using its Target range you can also choose different output formats, such as vertical, hor
	The Generator tool allows you to create matrices to your specifications. Apart from its four generators of specific matrices (Hilbert, inverse Hilbert, Tartaglia, and Toeplitz) of user-selectable order, it contains four random matrix generators, which
	Generator choiceBrief description
	Randomgenerates random matrices of user-selected dimensions, minimum and maximum element values, format (full, triangular, tridiagonal, integer, symmetric), and numerical resolution.
	Hilbert inverse generates the inverse Hilbert matrix of given order.
	Tartagliagenerates the Tartaglia matrix of given order.
	Toeplitzgenerates the Toeplitz matrix of given order.
	Sparsegenerates sparse square matrices of user-selected order, minimum and maximum element values,
	dominance factor, filling factor, and spreading factor. One can specify integer and/or symmetrical
	output, and regular (square) or sparse output display. In the latter case, all non-zero elements mij
	are listed in three adjacent columns as i, j, and mij.
	Table C.10.2: The choices offered in the Generator dialog box.
	The Macros tool provides easy access to a number of macros. Many of these macros duplicate matrix functions already described in appendices B.2 to B.8, but the sparse matrix operations contains some additional features. The choices given in the Macros di
	Macro choiceBrief description
	Matrix operationsreproduces the most often used matrix functions
	Gauss step-by-step a macro form of GJ_Step
	Graphincludes Shortest Path and Draw
	MethodsClean-up and Round
	Table C.10.3: The choices offered in the Macros dialog box.
	AE3 Appendix D corrected.pdf
	Appendix D

