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Appendix C 
Some details of Matrix.xla(m) 

C.1  Matrix nomenclature   
For the sake of notational compactness, we will denote a square diagonal matrix by D with elements 

dii, a square tridiagonal matrix by T with elements tij where | j – i | ≤ 1, most other square matrices by S, 
rectangular matrices by R, and all matrix elements by mij. A vector will be shown as v, with elements vi, 
and a scalar as s. Particular values are denoted by x when real, and by z when complex. All optional pa-
rameters are shown in straight brackets, [ ]. All matrices, vectors, and scalars are assumed to be real, ex-
cept when specified otherwise. All matrices are restricted to two dimensions, and vectors to one dimen-
sion. Table C.1 briefly explains some matrix terms that will be used in subsequent tables. 

With some functions, the user is given the integer option Int of applying integer arithmetic. When a 
matrix only contains integer elements, selecting integer arithmetic may avoid most round-off problems. 
On the other hand, the range of integer arithmetic is limited, so that overflow errors may result if the ma-
trix is large and/or contains large numbers. Another common option it Tiny, which defines the absolute 
value of quantities that can be regarded as most likely resulting from round-off errors, and are therefore 
set to zero. When not activated, the routine will use its user-definable default value.   
Condition of a matrix: ratio of its largest to smallest singular value  
Diagonal of a square matrix: the set of terms mij where i = j 
Diagonal matrix D square matrix with mij = 0 for all off-diagonal elements i ≠ j. 
Decomposition or factorization: writing a matrix as the product of two or more special matrices  
False as optional parameter: False = 0  
First lower subdiagonal of a square matrix: the set of terms mij where j = i+1 
First upper subdiagonal of a square matrix: the set of terms mij where j = i–1 
Inverse square matrix S–1 square matrix that satisfies S–1 S = S S–1 = I 
Hermitean matrix  a square matrix for which S*T = S where S* denotes the complex conjugate of S;  

all symmetric real matrices are Hermitian 
Hessenberg matrix H a square matrix with mij = 0 for j = i+k, k > 1 
Lower triangular matrix L  a square matrix with only 0’s below its diagonal 
Order of a square matrix: its number of rows or columns 
Orthogonal matrix a real, square matrix with the property S–1 = ST  
Rank order of largest nonsingular square submatrix of a matrix 
Rectangular matrix R a matrix with (in general) an unequal number of rows and columns  
Square matrix S a matrix with an equal number of rows and columns  
Subdiagonal the set of terms mij where i = j±k where k is an integer  
Symmetric matrix a square matrix S with all mij = mji, hence S = ST  
Toeplitz matrix a square matrix with constant elements on each diagonal parallel to the main diagonal 
Transpose RT matrix after interchanging its rows and columns 
Triangular matrix T matrix with non-zero terms only on its diagonal and first upper and lower subdiagonals 
True as optional parameter: True = 1  
Uniform matrix  repeats its elements on its diagonal and each subdiagonal 
Unit matrix I square matrix of arbitrary dimension m×m with 1’s on its diagonal, and 0’s above and below it 
Upper triangular matrix U  a square matrix with only 0’s below its diagonal. (Exceptions: the upper triangular matrix R in 

QR decomposition; the orthogonal matrix U in singular value decomposition.)  

Table C-1: The nomenclature used 
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C.2  Functions for basic matrix operations   
C.2.1  Functions with a scalar output  
Entering the functions listed below does not require the use of Ctrl∪Shift∪Enter.  

MAbs(R) Absolute value of R   ∑
ji

ijm
,

2  

MCond(R) Condition number κ of a matrix κ 
 computed using singular value decomposition  
 

MpCond(R) –log10 of matrix condition number pκ = –log(κ) 
 computed using singular value decomposition      
 
 

MDet(S [,Int] [,Tiny]) Determinant of a square matrix S   det[S] 
 Similar to Excel’s =MDETERM(S). Because of rounding errors, both  
 MDET and MDETERM can yield (often different) non-zero answers  
 For a singular matrix. When all elements of S are integer, and Integer is  
 set to True, MDET uses integer mode. Defaults: Integer = False, Tiny = 0.  
 

MRank(R) Rank of a matrix    
 

MTrace(S) Trace of a square matrix    tr(S) = ∑    
i

iim

C.2.2  Basic matrix functions  
Entering the following functions requires the use of Ctrl∪Shift∪Enter  

MAdd(R1,R2)  Addition of two matrices   R1+R2 
  equivalent to Excel’s =R1+R2, as in =B2:D5+F2:H5.   
 

MSub(R1,R2)  Subtraction of two matrices    R1–R2 
  Equivalent to Excel’s = R1–R2, as in =B2:D5–F2:H5.   
 

MT(R)  Transpose of a matrix    RT 

  equivalent to Excel’s function TRANSPOSE  
 

MMult(R1,R2)  Product of two matrices    R1 R2
 

  Excel’s function is listed here for the sake of completeness  
 

MProd(R1,R2,R3,...)  Product of two or more matrices        R1R2R3... 
  Pay attention to the dimensions, as the function MProd does not check them.  
 

MMultS(R,s)   Product of a matrix and a scalar  sR = Rs 
  equivalent to Excel’s scalar multiplication, as in =3.21*B2:G9.  
 

MPow(S,n)  Sn = S S S … S (n terms) Sn 
 

MInv(S [,Int] [,Tiny])  Inverse of S    S–1 
  similar to Excel’s =MINVERSE(M). Because of rounding errors, both  
  M_INV(M) and MINVERSE(M) can yield (different) non-zero element values for a  
  singular matrix. When Integer is set to True, integer mode is used. Any result smaller  
  in absolute magnitude than Tiny is set to zero. Defaults: Integer = False, Tiny = 0.   

MExp(S [,Algo] [,n])    Matrix exponential    ∑
∞

=
=

0 !n

n
S

n
Se  

 Uses Padé approximation (the default, Algo = “P”), otherwise the power method. 
 The default stops when convergence is  reached. When n is specified, the resulting  
 error can be obtained with =MExpErr(S, n)   
 

MExpErr (S ,n) Error term in matrix exponential    
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C.2.3  Vector functions  
ProdScal(v1,v2) Scalar product of two vectors               v1 • v2  
 

ProdVect(v1,v2) Vector product of two vectors                 v1 v2  

VectAngle(v1,v2) Angle between two vectors                                                  










⋅
•

21

21arccos
vv
vv   

C.3: More sophisticated matrix functions   
Diagonal or tridiagonal square matrices occur quite frequently in practical problems. When such matrices 

are of high orders, they can take up a large amount of space, even though most of it will be occupied by zeros. 
It is then often convenient to store and display m×m diagonal matrices D in compact notation as single m×1 
column vectors, and tridiagonal matrices T as m×3 rectangular matrices. A number of special instructions are 
provided for this space-saving approach. Don’t confuse compact notation with sparse notation, as used in con-
nection with sparse matrices, see Table C.10.3.  

MDetPar(S) Determinant of S containing one symbolic parameter k   det[S] 
 Used with Ctrl∪Shift∪Enter yields vector,  
 otherwise output shown as text string.  
 

MDet3(T) Determinant of T in n×3 format  det[T] 
 There is no need to use Ctrl∪Shift∪Enter, because the output is a scalar. 
 

MMult3(T,R) Multiplies a tridiagonal matrix in tricolumnar format     T R  
   with a rectangular or square matrix R, or even a vector v. 
 

MMultTpz (S,v) Multiplies a Toeplitz matrix in compact (columnar) format 
 and a vector v. For a Toeplitz matrix of order 2n+1, v must be n×1 
 

MBAB(S1,S2) Similarity transform           S1
–1 S2 S1 

MBlock(S) Transforms reducible, sparse square matrix into block-partitioned form 
 

MBlockPerm(S) The permutation matrix for MBlock 
 

MDiag(v) Convert vector v into D           mii = vi 

MDiagExtr(S [,d]) Extract the diagonal of S      
 d = 1 for the diagonal, i = j (the default), d = 2 for the first lower subdiagonal, i = j+1.  
 

C.4: Functions for matrix factorization   
 

The terms matrix factorization and matrix decomposition refer to the same operations, in which a given 
matrix is expressed as the product of two or more special matrices. This approach is often used to facili-
tate finding the required solution. The differences between the various available approaches reflect their 
general applicability, numerical efficiency, tolerance of ill-conditioning, etc.  

SVDD(R) Yields D of R = UT D V          D 
 The central result of singular value decomposition, providing the singular  
 values σi as well as easy routes to matrix rank r and condition number κ.  
 When R is Hermitian, the σi are the absolute values of its eigenfunctions.  
 Note: the traditional symbol U here does not imply an upper triangular matrix. 
 

SVDU(R) Yields U of R = UT D V         U 
 

SVDV(R) Yields V of R = UT D V         V 
 

MCholesky(S) Cholesky decomposition   S = L L–1 
 of a symmetric matrix M into a lower triangular square matrix L and its transpose LT 
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MLU(S [,pivot]) LU decomposition into a lower (L) and upper (U) triangular square matrix.      S = L U 
 The optional pivot (the default) activates partial pivoting 
 

MOrthoGS(R) Modified Gram-Schmidt orthogonalization  
 

MQH(S,v) decomposition of S with vector b    S = Q H QT 
 Q is orthogonal, H is Hessenberg. If S is symmetric, H is tridiagonal 
 

MQR(R) QR decomposition     A = Q R 
 Q is orthogonal, R is upper triangular  
 

MHessenberg(S) Converts S into its Hessenberg form H 
 

MChar(S, x) Computes characteristic matrix at real value x 
 If x complex, use MCharC(S, z) 
 

MCharPoly(S) Computes characteristic polynomial of S 
 Can often be combined with PolyRoots(P) 
 

PolyRoots(P) Finds all roots of a polynomial P  
 

PolyRootsQR(P) Finds all roots of a polynomial P  
 using the QR algorithm 
 

MNorm(R or v [,Norm]) Finds the matrix or vector norm   For matrix R: Norm: 0 (default) =  
Frobenius, 1 = max. abs. column sum, 2 = Euclidian norm, 3 = max. abs. row sum.  
For vector v: Norm: 1 = max. sum, 2 = Euclidian norm, 3 (default) = max. abs. value 

 

MPerm(p) generates a permutation matrix from a permutation vector p 
 

MCmp(v) Companion matrix of a monic polynomial P 
 where v contains the coefficients of P  

MCovar(R) covariance matrix                
m

mmmm
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m
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∑
=
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 similar to Excel’s COVAR(ai, aj)  
 

MCorr(R) correlation matrix (i.e., normalized covariance) 
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MExtract(R, row, column)   Creates a submatrix of R by extracting 
 a specified row and column 
 

MMopUp(R [,ErrMin]) Eliminates round-off errors from R  
 by replacing by zero all elements |aij| < ErrMin (default 10–15)   
 

MRot(m, theta, p, q) Creates orthogonal matrix of order m that rotates by angle theta in p,q plane  
 p ≠ q, p ≤ m, q ≤ m 
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C.5  Eigenvalues & eigenvectors   
The German word “eigen” in this context is best translated as “particular to”: eigenvalues and eigenvectors 

of a matrix are scalars and vectors that are particular to that matrix. They are only defined for square matrices.  

C.5.1: For general square matrices  
MEigenvalJacobi(S [,MaxIter]) Jacobi sequence of orthogonality transforms 
 MaxIter (default 100) is the max. # of iterations  
 

MEigenvalMax(S [,MaxIter]) Finds maximum |eigenvalue by using the iterative power method  
 MaxIter (default 1000) is the max. # of iterations  
 

MEigenvecPow(S [,Norm] [,MaxIter])  Approximates eigenvalues for diagonizable S    
 by using the power method. Normalizes eigenvector if Norm = True; default = False 
 MaxIter (default 1000) is the max. # of iterations  
 

MEigenvalQR(S) Approximates the eigenvalues of S by QR decomposition  
 Yields an n×1 array, or n×2 for complex eigenvalues 
 

MQRIter(S[,MaxIter]) Iterative diagonalization of M to yield its eigenvalues     
  based on QR decomposition MaxIter (default = 100) sets the max. # of iterations  
 

MEigenvec(S, eval [,MaxErr]) Computes eigenvector of S for a given eigenvalue(s) in vector eval 
 

MEigenvecInv(S, eval) Computes eigenvectors for a given vector eval by inverse iteration 
 

MEigenvecJacobi(S[,MaxIter]) Orthogonal similarity transforms of a symmetric matrix S 
 MaxIter (default = 100) sets the max. # of iterations  
 

MEigenvectMax(S [,Norm] [,MaxIter]) Yields eigenvector for dominant eigenvalue  
 (i.e., with max. absolute value).  Normalizes eigenvector if Norm = True; default = False 
 

MEigenvecPow(S [,Norm] [,MaxIter]) Yields real eigenvectors for diagonizable S  
 using the power method. Normalizes eigenvector if Norm = True; default = False.  
 MaxIter (default 1000) is the max. # of iterations  
 

MRotJacobi(S) Jacobi orthogonal rotation of symmetric S  
 

MEigenSortJacobi(eval, evec [,n])  Sorts eigenvectors by value of  |eigenvalue| 
 Optional n specifies number of eigenvectors shown 
 

MNormalize(R [,Norm] [Tiny]) Normalize real matrix R  
 Norm specifies normalizing denominator: 1 = |vmin|,  
 2 (default) = |v|, 3 = |vmax|; Tiny default = 2×10–14 
 

C.5.2: For tridiagonal matrices  
MEigenvalQL(T [,MaxIter])   Approximates eigenvalues of tridiago nal symmetric matrix    
 using the QL algorithm accepts T in either regular or compact format. 
 MaxIter (default 200) is the max. # of iterations  
 

MEigenvalTTpz(n, a, b, c)   Computes eigenvalues for a tridiagonal  
 Toeplitz matrix with elements a, b, c  
 All eigenvalues are real if ac > 0, complex if ac < 0 
 

MEigenvecT(T, eigenvalues [,MaxErr]) Approximates eigenvectors for given eigenvalue(s) of T  
 Accepts T in either square or compact format 
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C.6  Linear system solvers   
Linear system solvers solve a system of simultaneous linear equations in one single user operation. Int = 

True uses integer computation, otherwise use False (default). Tiny sets the minimum absolute round-off error 
that will be replaced by 0 (default: 10–15).   

SysLin (S, x [,Integer] [,Tiny])  Gauss-Jordan solution of linear system   
 M is the matrix of independent (control) parameters, x is the unknown coefficient vector or matrix  
 

SysLinIterG (S, x, x0 [,MaxIter] [,w])  Iterative Gauss-Seidel solution of linear system  
 using relaxation M is the matrix of independent (control) parameters, x is the unknown 
 coefficient vector or matrix, x0 its starting value,  MaxIter (default = 200) is the max # of iteration  
 (MaxIter = 1 can be used for  step-by-step use), w (default = 1) is the relaxation factor  
 

SysLinIterJ (S, x, x0 [,MaxIter] [,w])  Iterative Jacobi solution of linear system  
 S is the matrix of independent (control) parameters, x is the unknown 
 coefficient vector or matrix, x0 its starting value,  MaxIter (default =  200) is the max # of iteration  
 (MaxIter = 1 for step-by-step  use).  
 

SysLinT (T, x [,Type] [,Tiny])  Solution of triangular linear system 
by forward or backward substitution. T is either U (upper) or L (lower) diagonal; the optional  

(i.e., unnecessary) Type specifies U or L.  
 

SysLin3 (T3, x [,Integer] [,Tiny]) SysLin for tridiagonal matrix T3 
 where T3 is in compact notation 
 

SysLinTpz (S, v) Solves a Toeplitz linear system by Levinson’s method 
 

SysLinSing (S or R [,x] [,MaxErr])  Linear system analysis of a singular system 
The matrix can be square (m×m) or rectangular (m×n, where m<n, i.e., for an underdetermined  
system). When x is not specified, it is taken as 0. MaxErr (default = 10–13) sets the relative  
precision. For degenerate (multiplicitous) eigenvalues a larger error tolerance may be needed,  
such as MaxErr = 10–10. A system without solution returns a question mark.  

 

TraLin (R ,X [,B])   Linear transformation   `        Y = RX + B 
 R is m×n; X is n×p, B is m×p, and Y is m×p. Also works when p = 1, in which case X, B, and Y are vectors. 

 

C.7  Functions for complex matrices   
 

There are many physical phenomena that are best described in terms of matrix algebra with complex rather 
than real numbers. For example, the concept of a dielectric permittivity ε of a medium can be extended from 
strictly transparent media to (partially or completely) light-absorbing ones by considering ε as a complex quan-
tity. Electrical networks containing phase-shifting components are conveniently described in terms of complex 
quantities such as admittance and impedance. Likewise, the linear (i.e., small-amplitude) response of an elec-
trochemical interface is most completely described in terms of Rangarajan’s matrix model (J. Electroanal. 
Chem. 55 (1974) 297-374), which includes complex quantities reflecting the time lags of mass transport and 
interfacial capacitance. Modern quantum theory uses complex wave functions.   

The Excel functions involving complex quantities, as listed in Appendix A.5, only use the character string 
format. The matrix operations involving complex functions listed below allow the user, through the optional 
instruction parameter c, to select one of three notational formats. These formats are c = 1: split; c = 2: inter-
laced, and c = 3: character string. Figs. C.7.1 and C.7.2 illustrate these for when the real and imaginary com-
ponents are integer or non-integer respectively.  

In the split format each complex entity (scalar, vector, matrix) is displayed with its real components, and to 
its immediate right with its imaginary components. In the interlaced format, each complex number is repre-
sented in two adjacent cells on the same row. In the text string format, the numbers are displayed as character 
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strings listing both the real and imaginary component, as in the Excel-supplied functions for complex num-
bers. In the latter case, the results may have to be decoded with =IMREAL() or =IMAGINARY(). These three 
ways of representing complex numbers are illustrated in Fig. C.7.2. The default mode is 1, the split format. 

 
 
 

A B C D E F G H I
1
2 Split format (default)
3 -2 8 0 0 5 7 =MDetC(A3:F5)
4 3 4 6 5 -4 -2 9 -103
5 -2 9 8 6 2 6
6
7 Interlaced format
8 -2 0 8 5 0 7 =MDetC(A8:F10,2)
9 3 5 4 -4 6 -2 9 -103

10 -2 6 9 2 8 6
11
12 Text string format
13 -2 8+5j 7j =MDetC(A13:C15,3)
14 3+5j 4-4j 6-2j 9-103j
15 -2+6j 9+2j 8+6j

Fig C.7.1: The three ways to display complex quantities: (1) “split”, as entire quantities with real and imagi-
nary components, the default mode; (2) “interlaced”, in which each individual element is shown with its two 
components adjacent to each other; and (3) “string”, as text strings. The matrix and its determinant contain 
only integer and imaginary components, in which case the text string format is often the more compact.  

A B C D E F G
1
2 Split format (default)
3 -2.42750 8.17185 0.04820 0 4.53980 6.84630 =MDetC(A3:F5)
4 2.65938 4.07577 6.33463 5.28370 -4.32580 -1.68270 -20.96548 -78.61323
5 -2.36394 9.49214 7.88308 6.49700 2.01150 5.62860
6
7 Interlaced format
8 -2.42750 0 8.17185 4.53980 0.04820 6.84630 =MDetC(A8:F10,2)
9 2.65938 5.28370 4.07577 -4.32580 6.33463 -1.68270 -20.96548 -78.61323

10 -2.36394 6.49700 9.49214 2.01150 7.88308 5.62860
11
12 Text string format
13 -2.4275 8.17185+4.5398j 0.0482+6.8463j =MDetC(A13:C15,3)
14 2.65938+5.2837j 4.07577-4.3258j 6.33463-1.6827j -20.9654787597-78.6132259685j
15 -2.36394+6.497j 9.49214+2.0115j 7.88308+5.6286j

H

 
Fig C.7.2: The three ways to display complex quantities, when the numbers are not re-
stricted to integers, in which case the text string format may require much wider columns.   

 
MCplx (R1, R2 [,c])   Convert two real matrices M into one  complex matrix C  C = R1+iR2   

MAddC (C1, C2 [,c])   Add two complex matrices       C1 + C2 
 

MSubC (C1, C2 [,c])   Subtract two complex matrices      C1 + C2 
 

MAbsC (C[,c])   Absolute value of a complex vector  
 

MDetC (C) Determinant of a complex square matrix C         Det(C) 
 

MInvC (C [,c])   Invert of a complex square matrix                  C–1 
 

MMultC (C1, C2 [,c])   Product of two complex matrices C1 C2 
 

MPowC (C1, C2, C3, ... [,c])  Product of two or more complex matrices             C1 C2 C3 ... 
 

MMultSC(C, s [,c])  Product of a complex matrix C and scalar s   s C = C s  
 

MTC (C [,c]) Transpose of a complex matrix C CT 
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MTH (C [,c]) Hermitian (conjugate, adjoint) transpose of C  CH
 = C*T

 = CT*   
 

ProdScaleC (v1, v2)   Scalar product of complex vectors    v1 • v2 
 

MNormalize (C [,Norm] [,c] [Tiny]) Normalize complex matrix C  
 Norm specifies normalizing denominator: 1 = |vmin|,  
 2 (default) = |v|, 3 = |vmax|; Tiny default = 2×10–14 
 

MCharC (C, z [,c]) Compute characteristic matrix of C at value z         
  M and/or z can be real or complex 
 

MCharPolyC (C, [,c]) Compute the characteristic polynomial  
 

PolyRootsQRC (p, [,c]) Find all roots of a complex vector p of polynomial coefficients  
 using the QR algorithm 
 

MEigenvalQRC (C [,c]) Approximates the eigenvalues of a complex square matrix C 
 using QR decomposition 
 

MEigenvecC (C [,c]) Compute complex eigenvector of C for given complex eigenvalue(s) 
 

MEigenvecInvC (C, eigenvalues [,c]) Compute eigenvector of C for given eigenvalue(s) 
 by inverse iteration 
 

SysLinC (C, x [,c]) Gauss-Jordan solution of complex linear system. 
 C:  vector or matrix of independent parameters, x: is the unknown coefficient vector or matrix  
 

C.8  Matrix generators   
The following is a collection of routines for generating various types of matrices. It starts with the 

simplest, the identity matrix, and includes not only a number of named matrices but, also, routines to gen-
erate custom-ordered matrices, such as matrices with a given set of eigenvalues or with a given amount of 
sparsity. Often used option: Int = True (default) creates an integer matrix, otherwise use False.   

MIde(m) Generates the identity matrix I of order m, i.e., Im×m 
 

MRnd(m [,n] [,Type] [,Int] [,AMax] [,AMin] [,sparse]) 
Generates a random m×n matrix (default: n = m). Type specifies the type of matrix: All (default) fills 
all cells, Sym generates a symmetrical matrix, Dia a diagonal one, Trd a tridiagonal, Tlw a tridiagonal lower, 
Tup a tridiagonal upper, and SymTrd a symmetrical tridiagonal matrix. AMax and AMin specify the maxi-
mum and minimum element values. Sparse accepts values from 0 to 1: 0 (default) for filled, 1 for very sparse.  

 

MRndEig(v [,Int]) Creates a random real matrix for a given vector v of eigenvalues  
MRndEigSym(v)      Creates a symmetrical random real matrix for a given vector v of eigenvalues  
 

MRndRank(m [,Rank] [,Det] [,Int]) Creates a square real matrix with a given value of Rank  
 or Determinant. If Rank < m, Det = 0.  
 

MRndSym(m [,Rank] [,Det] [,Int]) Creates a square real symmetrical matrix of dimension m×m  
 with a given value of Rank or Determinant. If Rank < m, Det = 0.  
 

MHilbert(m) Creates the m×m Hilbert matrix  
 The Hilbert matrix is ill-conditioned; its elements hij = 1/(i+j+1) are shown in decimal form   
 

MHilbertInv(m) Creates the m×m inverse Hilbert matrix  
 The elements of the inverse Hilbert matrix are all integer 
 

MHouseholder(x) Creates the Householder matrix of vector x 
 

MTartaglia(m) Creates the m×m Tartaglia (or Pascal) matrix  
 Element values: mi1 = m1j = 1; for i > 1, j >1: mij = mi–1,j+mi,j–1  
MVandermonde(x)   Creates the Vandermonde matrix X  
 of vector x, as used in, e.g., the least squares formalism 
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C.9  Miscellaneous functions   
C.9.1  Linear least squares routines  

RegrL(y, x [,Intercept]) Linear least squares based on svd  
Equivalent to post-Excel2002 LinEst. y: N×1 vector of dependent variables, x: N×1 vector or N×m matrix of 
independent parameters for the monovariate and multivariate case respectively. Intercept = a0 when specified; 
default leaves a0 unspecified. First output column: coefficients ai; 2nd output column: standard deviations si.  

 

RegrP(Order, y, x [,Intercept]) Linear least squares polynomial fit  
based on svd, equivalent to post-Excel2002 LinEst. Order is the polynomial order, y the N×1 vector of de-
pendent variables, x the N×1 vector of the independent parameter x. Powers of x are generated internally. In-
tercept = a0 when specified; default leaves a0 unspecified. Output: 1st column: coefficients ai; 2nd column: 
standard deviations si. 

 

RegrCir(x, y) Least squares fit to a circle through all points (xi,yi), yields 
 radius and x,y coordinates of circle center, with standard deviations 
 

C.9.2  Optimization  routine  
Simplex(y, constraints [,optimum])  Simplex optimization  

y = a0 + a1x1 + a2x2 +..., as 1×m vector of the coefficients a0, a1, a2, ...  
constraints: <, >, = ; optimum: 1 (default) maximum, 0 minimum 

C.9.3  Step-by-step demonstration  
GJStep(S [,Type] [,Integer] [,Tiny]) Step-by-step (didactic) tracing of Gauss-Jordan elimination  
 leading to either diagonal (Type = D) or triangular (Type = T) reduction. Integer = True conserves integer  
 values, default = False. Tiny sets minimum round-off error; default = 2×10–15. Copy & paste for the next step. 
 

C.9.4  Economic optimization routines  
MLeontInv (S,v) Inverts the Leontief matrix encountered  in economic input-output analysis  
 

VarimaxIndex (F [,row-norm]) Varimax index for given factor loading matrix F.  

 Row-normalization: False (default)  or True 
 

VarimaxRot (F [,row-norm] [,MaxErr] [,MaxIter])  Orthogonal rotation of factor loading matrix F  
 in Kaiser’s Varimax model.  
 Row-normalization: False (default) or True; MaxErr default = 10–4; MaxIter default = 500. 
 

C.9.5  Minimum path routines  
PathFloyd(G) Computes the matrix of shortest-path pairs from an adjacency matrix G 
 

PathMin(G) Shows vectors of shortest paths  
 

C.9.6  Routine for electrical  circuit admittance  
MAdm(B) Creates an admittance matrix from a 3- or 4-column wide branch matrix B 
 (two columns for the nodes, and 1 or 2 columns for the admittance of the individual circuit elements 
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C.10: Matrix macros   
The Matrix Toolbar provides access to a set of matrix-related macros through three menu headings: 

Selector, Generator, and Macros. Below we will briefly describe each one of these. 

C.10.1  The Selector tool  
The Selector tool can be used to select different parts of a matrix. Start with identifying a matrix 

(when that matrix is bordered by empty cells, just clicking on a single cell of that matrix will do), and 
then use the choices presented in the Selector dialog box. In other words, click on a cell in a matrix, click 
on Selector, click on a choice, such as Triang. low, again click on the Selector, then on the Paster (at the 
bottom of the Selector menu), select a starting cell, and click OK. You will see the lower triangular part of 
the selected matrix appear, starting at the selected starting cell. The available choices are listed in Table 
C.10.1. You can even arrange for diverse output formats through the Target range selector. When you do 
not specify a matrix ahead of time, click on Selector, and its dialog box will give you entry to the Selector 
choices.   

Selector choice Brief description 

Full the entire matrix 
Triang. low the lower triangle, including the diagonal  
Triang. up the upper triangle, including the diagonal  
Diag. 1st the (main) diagonal, from top-left to bottom-right  
Diag. 2nd the anti-diagonal, running from top-right to bottom-left 
Tridiag. 1st the tridiagonal, from top-left to bottom-right 
Tridiag. 2nd the anti-tridiagonal, from top-right to bottom-left 
Subtriang. low the lower triangle minus the diagonal 
Subtriang. up the upper triangle minus the diagonal 
Adjoint the matrix minus the row and column of the chosen cell 

Table C.10.1: The choices offered in the Selector dialog box. 

As its default, the Selector dialog box will copy the selected matrix parts as is, at your option leaving 
the unselected cells empty or filling them with zeros. By using its Target range you can also choose dif-
ferent output formats, such as vertical, horizontal, diagonal, transposed, etc. For the Adjoint output, also 
set the Target range at Adjoint.   

C.10.2  The Generator tool  
The Generator tool allows you to create matrices to your specifications. Apart from its four generators 

of specific matrices (Hilbert, inverse Hilbert, Tartaglia, and Toeplitz) of user-selectable order, it contains 
four random matrix generators, which are marvelous learning and teaching tools, especially when com-
bined with some of the matrix functions described in the earlier sections to monitor their performance. 
Table C.10.2 lists the various choices available.     
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Generator choice Brief description 

Random generates random matrices of user-selected dimensions, minimum and maximum element values, format 
(full, triangular, tridiagonal, integer, symmetric), and numerical resolution. 

Rank/Determinant generates random square matrices of user-selected order and determinant (the default, if rank = order) or 
rank (if det = 0).  

Eigenvalues generates random square matrices with user-selected eigenvalues.  
Hilbert generates the Hilbert matrix of given order.  
Hilbert inverse  generates the inverse Hilbert matrix of given order. 
Tartaglia generates the Tartaglia matrix of given order. 
Toeplitz generates the Toeplitz matrix of given order. 
Sparse generates sparse square matrices of user-selected order, minimum and maximum element values,  
 dominance factor, filling factor, and spreading factor. One can specify integer and/or symmetrical  
 output, and regular (square) or sparse output display. In the latter case, all non-zero elements mij  
 are listed in three adjacent columns as i, j, and mij.   

 Table C.10.2: The choices offered in the Generator dialog box. 

C.10.3  The Macros tool  
The Macros tool provides easy access to a number of macros. Many of these macros duplicate matrix 

functions already described in appendices B.2 to B.8, but the sparse matrix operations contains some ad-
ditional features. The choices given in the Macros dialog box are listed in Table B.10.3. Some matrices 
can be selected by simply pointing to one cell of that matrix, and by then clicking on the smart selector 
icon, labeled with a rectangle. This method works only when the matrix in question is surrounded by 
empty cells and/or the spreadsheet border.  
Macro choice Brief description 

Matrix operations reproduces the most often used matrix functions  
Complex matrix operations duplicates many of the functions of section 9.7  
Sparse matrix operations applies the most common matrix operations to sparse matrices in sparse matrix format (i.e., in three 

adjacent columns: i, j, mij), thereby greatly facilitating handling large sparse matrices on the spread-
sheet. It includes an efficient ADSOR (adaptive successive over-relaxation) Gauss-Seidel method.   

Eigen-solving provides eigenvalues, eigenvectors, the characteristic matrix, and the characteristic polynomial for 
a square (real, real tridiagonal, complex) matrix  

Gauss step-by-step  a macro form of GJ_Step 
Graph includes Shortest Path and Draw 
Methods Clean-up and Round 

Table C.10.3: The choices offered in the Macros dialog box. 
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Appendix D 
XN extended-precision functions & macros  

Here we list the major instructions available at present with XN.xla(m) version 6051. The further 
down the list, the sparser the annotations. A more complete listing is available once you have installed 
XN.xla(m), and its Toolbar, which can be toggled on and off by clicking on the XN purple book icon fea-
turing an X. Because this software is still developing and growing; whenever information provided here 
differs from the documentation provided with your installed version, consider the latter as authoritative. 
For a quick guide on the format used, also consult the Paste (Insert) Function window by clicking on its 
icon, fx. Note that numbers displayed by Excel are usually stored as their binary approximations; when 
they are text strings, they are shown within quotation marks " inside the function argument, or as 'a = . 

For the list of available functions click on the Help button of the XN Toolbar, click on Help-on-line, 
which will open up the Xnumbers version 6.0 Help file. For the most recent list of functions, which in-
cludes the many recent updates from John Beyers, click on “changes to version 6.0” at the end of its first 
paragraph. For the older functions, use its Index of Functions or other items in its Contents. When in 
doubt, try them out! 

In the list below, items shown within straight brackets [ ] are optional. The letter D is used as an abbre-
viation for DgtMax; I recommend a value of 35 (roughly quintuple precision) to 50, as usually sufficient 
for final 15-decimal accuracy yet still very fast. The value of D = 35 is used here unless otherwise speci-
fied. As long as you avoid degrading its performance by mixing in double-precision operations, XN func-
tions and macros with D = 35 pass all NIST StRD linear and nonlinear least squares tests with flying col-
ors. Whether you will find pE = 15 or ‘merely’ pE ≥ 14 may well depend on how you read in the data 
files. When you import test data, and then let a VBA routine read them from Excel, it will read the stored 
data, which are binary approximations of the data shown on the screen, see section 11.14. Instead, copy 
them literally and place them between quotation marks. In the same vein, be careful with your input ar-
guments. Instead of 1/3 use xDiv(3,10), replace 0.317 by “0.317”, for -2 substitute xNeg(2) or “-2”, etc., e 
you may degrade the accuracy of your output. 

To change the default D-value, use the XN Toolbar, select X-Edit  Configuration, and enter the de-
sired value in the Default digits window. For 32-bit systems, the current D-values range from D ≤ 630 for 
XN.xla(m)6051-7A or -7M, to D ≤ 4030 for XN.xla(m)6051-13A or -13M. For best accuracy and speed, 
stay at least two packets (14 decimals for –7A and –7M, 26 decimals for –13A and –13M) below the up-
per edges of these ranges. Using a D-value much larger than needed merely slows you down. 

D.1  Numerical constants 
The brackets are required, even when empty, in which case D assumes its default value, here set to 35.  
xPi ([D]) π, the ratio of circumference to diameter of a circle   π 
 xPi() = 3.1415926535897932384626433832795029 when default D is 35;  
 xPi(58)  =  3.141592653589793238462643383279502884197169399375105820975;  
 xPi(600) = 3.141592653589793238462643383279502884197169399375105820974 
 94459230781640628620899862803482534211706798214808651328230664709384 
 46095505822317253594081284811174502841027019385211055596446229489549 
 30381964428810975665933446128475648233786783165271201909145648566923 
 46034861045432664821339360726024914127372458700660631558817488152092 
 09628292540917153643678925903600113305305488204665213841469519415116 
 09433057270365759591953092186117381932611793105118548074462379962749 
 56735188575272489122793818301194912983367336244065664308602139494639 
 522473719070217986094370277053921717629317675238467481846766940513. 
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x2Pi([D]) 2π  2π 
 xPi(50) = 6.2831853071795864769252867665590057683943387987502; 
 xPi(5) = 6.2832; xPi() = 6.2831853071795864769252867665590058. 
 

xPi2 ([D]) π/2  π/2 
 xPi2(50) = 1.5707963267948966192313216916397514420985846996876. 
xPi4 ([D]) π/4  π/4 
 xPi4(50) = 0.78539816339744830961566084581987572104929234984378.  
xE ([D]) e, the base of the natural logarithm  e 
 xE() = 2.7182818284590452353602874713526625 when the default D is 35 
xEu ([D]), xGm([D]) γ, Euler’s gamma         γ 
 xEu(42) = xGm(42) = 0.577215664901532860606512090082402431042159. 
xLn2 ([D]) Natural logarithm of 2     ln (2)  
 xLn2(50) = 0.69314718055994530941723212145817656807550013436026. 
xLn10 ([D]) Natural logarithm of 10    ln (10)  
 xLn10(50) = 2.3025850929940456840179914546843642076011014886288.  
xRad5 ([D]) Square root of 5   √ (5)  
 xRad5(50) = 2.2360679774997896964091736687312762354406183596115. 
xRad12 ([D]) Square root of 12   √ (12) 
 xRad12(50) = 3.4641016151377545870548926830117447338856105076208. 

D.2  Basic mathematical operations     
xAbs (a) Absolute value      |a| 
 Do not enter D in this instruction. xAbs("-1.2345") = 1.2345; 
 xAbs("-1234567890.0987654321") = 1234567890.0987654321; 
 xCos(xPi()) = -1 so that xAbs(xCos(xPi())) = 1.  
xIncr (a) Increment a by 1    a+1 
 e.g.,  xIncr(xPi())  =  4.1415926535897932384626433832795029 and  
 xIncr(xPi(28)) = 4.141592653589793238462643383 for (π + 1 ), where  
 xPi([D]) has an optional D, while xIncr(xPi(),28) yields #VALUE!  
 because it incorrectly specifies D for xIncr(), which cannot handle it.  
xAdd (a, b [,D]) Addition    a+b 

 e.g., Add(xPi(),xE()) = 5.8598744820488384738229308546321654, 
 xAdd(xPi(),xE(),21)  =  5.85987448204883847382 for (π + e ) with 
 35 (the default used here) or 21 decimals respectively.   

xSum (A [,D]) Summation of terms in a cell range    Σ ai 
 Ignores empty cells as well as cells containing text. Example: Place the 
 instruction =xPi() in cell B3, =xIncr(B3) in B4, and copy this down to  
 B8. In cell B10 then place the instruction =xSum(B3:B8), which will yield 
 33.849555921538759430775860299677017. In cell B11 verify that you get 
  the same answer with =xAdd(15,xMult(6,xPi())) for (1+2+3+4+5) + 6 π. 

xNeg (a) Negation    –a 
 Do not use –a because it will convert the result to double precision. 
 Instead, always use xNeg instead of a minus sign in XN, otherwise you  
 will revert to double precision. Using quotation marks surrounding a  
 fractional number uses it as shown, xNeg("-1234567890.0987654321") =  
 1234567890.0987654321 whereas xNeg(-1234567890.0987654321) = 
 1234567890.098759889602661133 uses the value stored by Excel approxi-   
 mating the 15-decimal number -1234567890.09876 in binary notation. No  
 such distortion (but still truncation to 15 decimals) occurs with integers: 
 xNeg(-12345678900987654321) = 123456789009876. 
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xSub (a, b [,D]) Subtraction    a–b 
 equivalent to xAdd(a, xNeg(b)). Do not use xAdd(a,–b) because the  
 notation –b will make the result double precision. Example: (π – e )  
 xSub(xPi(),xE()) = 0.4233108251307480031023559119268404. Also: 
 xSub("1.000000000000000012345678","1.000000000000000023456789") 
 = -1.1111111E-17, with all leading zeroes automatically deleted. And note: 
 xSub(1.2345678901234," 1.2345678901234") = 6.9057879591E-17 illus- 
 trates the distortion due to decimal-to-binary conversion. 

xMult (a, b [,D]) Multiplication    a × b 
 e.g., xMult(6, Pi()) = 18.849555921538759430775860299677017, and 
 xMult(6,Pi(42),42) = 18.849555921538759430775860299677017305183. 

xProd (a [,D]) Multiplication of components of a cell range   Π ai 
 Ignores empty cells as well as cells containing text. The range can be a column,  
 a row, or a rectangular array, but not an enumeration of comma-separated cell  
 values or cell addresses..   

xInv (a) Inversion    1/a 
 When a = 0, xInv(a) yields ″?″. Example: 1/9 in 42-decimal precision  
 is xInv(9,42) = 0.111111111111111111111111111111111111111111 

xDiv (a, b [,D]) Division    a/b 
 or: xMult(a, xInv(b)). When b = 0, xDiv(a,b) yields ″?″.  
 xDiv(7,9,42) = 0.777777777777777777777777777777777777777778 

xDivInt (a, b) Integer division                       int (a/b) 
 xDivInt(a,0)  ″?″. xDivInt(7,9) = 0; xDivInt(13,7) = 1; xDivInt(-13,7) = -2. 

xPow (a, p [,D]) Power      ap 

 where a can be positive or negative, and with integer or noninteger powers p 
 xPow(xPi(),xNeg("2.7"),21)  =   4.54668999316115830687E-2  
 but xPow(xPi(),xNeg(2.7),21) = 4.54668999316115738232E-2; and watch this: 
 xPow(xNeg(xPi());xNeg("2.7"),21) = -2.67247732472589436167E-2 
 -3.67834947262189055211E-2j because –π–2.7 has a complex root.    

xPow2 (p  [,D]) Power of 2      2p 

 where the power p can be positive or negative, integer or noninteger.   
 e.g. xPow2(xNeg("400.3") = 3.1455220629461415507035091262930301E-121;  
 xMult(xPow2(xNeg("400.3")),xPow2("400.3"),34) = 1.  

xExp (p [,D]) Exponential    ep  
 xExp(80) = 55406223843935100525711733958316613, xExp(800)  
 = 2.7263745721125665673647795463672698E+347 and xExp(800,14)  
 = 2.7263745721126E+347. The latter two cannot be read by Excel or reduced 
 to double precision, because Excel cannot store numbers beyond E308.  

xExpa (p [,a] [,D]) Arbitrary power       ap  
 Note the unusual argument order: power first, then the value raised to it:  
 xExpa(3,7) = 343 = 7^3. When a is unspecified, a = 10: xExpa(3) = 1000; 
 xExpa(3,xPi()) = π3 = 31.006276680299820175476315067101396,   
 xExpa(xNeg(3),xPi()) = (-π)3 = -3.2251534433199492956082745196133453E-2; 

watch the commas: xExpa("3.01",17) = 5054.1863831357180932094218872658106 but 
xExpa("3.01",,17) = 1023.2929922807541 and xExpa(3.01,,17)  = 1023.2929922807536; 

 xExpa(xNeg("3.01"))  =  31.363254111413810434877685894955175; 
 xExpa(xNeg("3.01"),xNeg(xPi()),21) = (-π)-3.01 = -3.18844465707427014412E-2).  

xExpBase (a,ax [,D]) Arbitrary power       ax 
 Arbitrary power of any base. Similar to xExpa(x,a[,D]) but a not optional.  
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xSqr (a [,D])  Square root of a             √ (a) 
 xSqr("4.7") = 2.1679483388678799418989624480732099 = √ (4.7), 
 xSqr("4.7",50) = 2.167948338867879941898962448073209935826865748722. 
 

 
 
 

xSqrPi (a [,D]) Square root of a times π   √ (aπ) 
 for a ≥ 0. If a is omitted, a = 1. xSqrPi(,21) = 1.7724538509055160273 = √ π ,  
 xSqrPi("4.7",21) = 3.84258838179059041156 = √ (4.7 π) to 21 decimals. 
xRoot (a [,b] [,D]) Arbitrary root      a1/

  
b 

 b need not be an integer; default: b = 2. xRoot(9) = 3  = √ 2 , as is xRoot(9,2),  
 but xRoot(2,9) = 1.0800597388923061698729308312885969, and xRoot(2,,9)  
 = 1.41421356; xRoot(78,9) = 1.6226794404526244307856240252218919 = 781/9, 
 while xRoot(78,"9.0001")  =  1.6226707127436371883687249182251982. 

xLn (a [,D]) Natural logarithm     ln a  
 xLn(11,50) = 2.3978952727983705440619435779651292998217068539374.  

xLog (a [,base] [,D]) General logarithm        log n a, log a 
 Optional base must be positive; default = 10. Analogous to Excel’s LOG(a [,base]) 

where LOG(4,2) = 2 = log2(4) and LOG(4) = 0.60206.. = log10(4), XN uses 
xLog(30,3) = 3.0959032742893846042965675220214013 =log3(30) at Ddefault = 35,  
and xLog(30,,35) = xLog(30) = 1.4771212547196624372950279032551153 =log10(30)  

D.3  Trigonometric and related operations 
All angles are assumed to be in radians. The prefix ar stands for area, the prefix arc for arc. 

xSin (α [,D]) Sine    sin α  
 xSin(0.5,50) = 0.4794255386042030002732879352155713880818033679406; 
                                          xSin(xPi()) = -1.5802830600624894179025055407692184E-35;  
 xSin(xPi(46),46) = 3.751058209749445923078164062862089986280348253E-46;   
                                        xSin(xSub(xPi(),0.00000001)) = 1.0000000000000000042558941617530493E-8; 
 xSin(xSub(xPi(),"0.00000001")) = 9.9999999999999998333333333175305036E-9. 

xCos (α [,D]) Cosine    cos α  
 xCos("0.5",50)   =  0.87758256189037271611628158260382965199164519710974  
 and xCos(0.5,50) = 0.87758256189037271611628158260382965199164519710974, 
 because 0.5 = ½ is exactly convertible into binary notation, as are 0.75, 0.625, etc.;  
                                          xCos(xPi2(),50) = 4.2098584699687552910487472296153908203143104499314E-35. 
                                          xCos(xPi2(50),50) = -4.7089512527703846091796856895500685982587328941466E-50. 

xTan (α [,D]) Tangent    tan α  
 xTan(0.5,50) = 0.54630248984379051325517946578028538329755172017979. 

xASin (a [,D]) Inverse sine    arcsin a  
 |a| ≤ 1;  xASin(1) = 1.5707963267948966192313216916397514;  
 xASin(xNeg(1),48) = -1.57079632679489661923132169163975144209858469969. 
xACos (a [,D]) Inverse cosine                arccos a  
 |a| ≤ 1;  xACos(0,48) = 1.57079632679489661923132169163975144209858469969. 

xATan (a [,D]) Inverse tangent    arctan a  
 xATan(1,50) = 0.78539816339744830961566084581987572104929234984378. 
xATan2 (a, b [,D]) Inverse tangent of quotient a/b           arctan (a/b) 
 xATan2(3,4,50) = 0.64350110879328438680280922871732263804151059111531; 
 note that the order of a and b is reversed from that used in Excel’s ATAN2. 
xSinH (a [,D]) Hyperbolic sine     sinh a  
 sinh a = ( ex – e–x) / 2;  xSinH(3) = 10.017874927409901898974593619465828. 
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xCosH (a [,D]) Hyperbolic cosine    cosh a 
 cosh a = ( ex + e–x) / 2;   xCosH(0.3) = 1.0453385141288604816444546338323457 but 
 xCosH(xDiv(3,10)) = xCosH("0.3") = 1.0453385141288604850253090463229121.  
xTanH (a [,D]) Hyperbolic tangent    tanh a 
 tanh a = (ex – e–x) / ( ex + e–x);  xTanH("0.1",28) = 9.966799462495581711830508368E-2 
xASinH (a [,D]) Inverse hyperbolic sine    arsinh a  
 arsinh a = ln [a+√(a2+1)];  xASinH("0.1",28) = 0.0998340788992075633273031247 
xACosH (a [,D]) Inverse hyperbolic cosine                arcosh a  
 arcosh a = ln [a+√(a2–1)], a > 1;   
xATanH (a [,D]) Inverse hyperbolic tangent    artanh a  
 artanh a = ½ ln [(1+a)/(1–a)];  xATanH(0.1,28) = 0.1003353477310755862429135451; 
 xATanH("0.1",28) = 0.1003353477310755806357265521. 
xAngleC (a [,D]) Complement of angle α    π / 2 – α  
 xAngleC(0.25,21) = 1.3207963267948966192313216916397514;  
 xSub(xPi2(21),0.25,21) = 1.3207963267948966192313216916397514.  
xDegrees (a [,D]) Converts radians into degrees                         radians→degrees 
 xDegrees(xPi4()) = 45; xdegrees(xMult(4,xPi()),28) = 720.   
xRadians (a [,D]) Converts degrees into radians                         degrees→radians  
 xRadians(180) = 3.1415926535897932384626433832795029 = xPi()   
xAdjPi (a [,D]) Adjusted angle, in radians, between –π and +π   
 xAdjPi(xMult(5.75,xPi()),21) = -2.35619449019234492885 = xMult(3,xNeg(xPi4()),21) 
xAdj2Pi (a [,D]) Adjusted angle, in radians, between 0 and 2π            
 xAdj2Pi(xMult(6.75,xPi()),21) = 2.35619449019234492885 = xMult(3,xPi4(),21) 

D.4  Statistical operations 
A is an array of numbers ai in a contiguous row, column, or block. 

xMean (A [,D]) Mean            /n )(
1

∑
=

n

i
ia

 xMean(1,3,4,10) = xMean({1,3,4,10},21) = xMean(C14:C17,21) = 4.5 
 when C14:C17 contains 1, 3, 4, and 10 respectively.  
xMedian (A) Median  
 xMedian(1,3,4,10) = xMean(C14:C17,21) = 3.5 when C14:C17 
 contains 1, 3, 4, and 10 respectively. Do not specify D. 

xGMean (A [,D]) Geometric mean           n
naaa ××× L21   

 xGMean({1,3,4,10},21) = xGMean(C14:C17,21) =  
 3.30975091964687310503 when C14:C17 contains 1, 3, 4, 
 and 10 respectively; A must be an array or a named range. 

xHMean (A [,D]) Harmonic mean                   ∑
=








n

i ia
n

1

1
  

 xHMean({1,3,4,10},21) = xHMean(C14:C17,21) =  
 2.37623762376237623762 when C14:C17 contains 1, 3, 4, 
 and 10 respectively; A must be an array or a named range.  
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)   xQMean (A [,D])  Quadratic mean     ( /n 
1

2∑
=

n

i
ia

 xQMean({1,3,4,10},21) = xQMean(C14:C17,21) =  
 5.61248608016091207838 when C14:C17 contains 1, 3, 4, 
 and 10 respectively; A must be an array or a named range.  

xStDev (A [,D]) Standard deviation              
1

)( 2

1

−

−∑
=

n

aa
n

i
avi

 
 

 xStDev({3.1,3.2,3.3},21) = xStDev(B3:B5,21) =  
 9.99999999999998667732E-2 when B3:B5 contains 3.1, 3.2,   
 and 3.3 respectively; xStDev({"3.1","3.2","3.3"},21) = 0.1 

xStDevP (A [,D]) Population standard deviation             
n

aa
n

i
avi

2

1
)(∑

=
−

 

 xStDevP({3.1,3.2,3.3},21) = xStDevP(B3:B5,21) =  
 0.081649658092772494494 when B3:B5 contains 3.1, 3.2,   
 and 3.3 respectively; xStDev({"3.1","3.2","3.3"},21)   
 =  8.16496580927726032732E-2. 

xVar (A [,D]) (Sample) variance   
1

)( 2

1

−

−∑
=

n

aa
n

avi
i   

 xVar({3.1,3.2,3.3},21) = xVar(B3:B5,21) =  
 9.99999999999997335465E-3 when B3:B5 contains 3.1, 3.2,   
 and 3.3 respectively; xVar({"3.1","3.2","3.3"},21) = 0.01 

xVarP (A [,D])  Population variance   
n

aa
n

avi
2

1
)(∑

=
−

i  

 xVarP({3.1,3.2,3.3},21) = xVarP(B3:B5,21) =  
 6.6666666666666489031E-3 when B3:B5 contains 3.1, 3.2,   
 and 3.3 respectively; xVar({"3.1","3.2","3.3"},21)   
 =  6.66666666666666666667E-3. 
xFact (n [,D]) Factorial    n! 
 For n a positive integer; if not integer, n is rounded down to the next integer.  
 xFact(27) = 10888869450418352160768000000,  
 xFact(28) = 3.04888344611713860501504E+29,  
 xFact(1E7) = 1.2024234005159034561401534879443076E+65657059, 
 xFact(xFact(25)) = 3.5679279579588489448587652949509 ×  
                                    E+384000963322077998379052338.  

xFact2 (n [,D]) Double factorial    

                                          n odd: ∏
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=−=−
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i
kn

nin
1 2!
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==
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 xFact(27) = 10888869450418352160768000000,  
 xFact(28) = 3.04888344611713860501504E+29,  
 xMult(xFact2(27),xFact2(28)) = 3.04888344611713860501504E+29 = xFact(28). 

xComb (n, m [,D]) Binomial coefficient          
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 xComb(20,10) = 184756,  
 xComb(200,100) = 9.0548514656103281165404177077484164E+58, 
 xComb(2000,1000,45) = 2.048151626989489714335162502980825 04439642489E+600 
 or, displayed in its full 600-decimal glory, as xComb(2000,1000, D) with D ≥ 601. 

xComb_Big (n, m [,D]) Binomial coefficient for large numbers        
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 xComb_Big(10000000,9000000,28) = 1.093540446065167765202685186E+1411814 

xCorrel (A, B [,D]) Correlation coefficient             
BA

AB
AB ss

vr =  

 xCorrel({1,2,3,4,5,6},{7,5,8,6,9,7},21) = 0.377964473009227227215; 
 xDiv(xCovar(A12:A17,A19:A24),xMult(xStDevP(A12:A17),xStDevP(A19:A24)),21) 
 = 0.3779644730092272272145, see (2.10.2), when A12:A17 = {1,2,3,4,5,6} etc.  
 xCorrel({1,2,3,4,5,6},{3,4,5,6,7,8},21) = 1. A and B are data sets, addressed 
 either as a listing of their individual values (see the above examples) or by  
 reference to their spreadsheet addresses ranges. Note: in this book we deal  
 with physical laws, and a correlation coefficient rxy ≤ 0.9 is usually  
 considered insignificant. However, in the social sciences, where there are  
 often many complicating factors, andrxy= 0.9 may be viewed as highly  
 significant. It all depends on the context. 

xCovar (n, m [,D]) Covariance         ∑
=

−−
N

k
avjkjaviki aaaa

N 1
,,,, ))((1

 

 xCovar({1,2,3,4,5,6},{7,5,8,6,9,7}) = 0.83333333333333333333333333333333333, 
 xCorrel({1,2,3,4,5,6},{1,2.1,3,4,5,6}) = 0.9997952055948281569160316960045599. 
xStatis (A[,D]) Univariate statistical summary of a data range A 
 Yields five parameters in row format (deposit the instruction with block-enter): 
 number of data N; their mean; sample standard deviation; population standard 
 deviation; and autocorrelation with lag 1 = Σ1

n-1{(xi–xav) (xi+1–xav)}/ Σ1
n{(xi–xav)2.  

 xStatis({1,2,3,4,5,6},18) = {6, 3.5, 1.87082869338697069, 1.70782512765993306, 0.5}. 
xRand ([,D]) Random number between 0 and 1         U(0, 1) 
 xRand() = 0.36884713172912601715122290811538286.  
xRandD (a,b [,D]) Random number between a and b         U(a, b) 
 xRandD(4.1,4.3) = 4.1971631407737729339958908101987838. 
 Note that a can be smaller or larger than b.  
xRandI (a,b [,D]) Random integer between a and b          
 xRandI(4.2,-11.3) = -2; a can be smaller or larger than b, and neither needs to be integer.  

D.5  Least squares functions 
xIntercept (y, x [,D]) Intercept of least squares straight line with y-axis  a0 
xSlope (y, x [,D]) Slope of least squares straight line    a1 
xRegLinCoef (y, x [,D] [,intercept])  Least squares coefficients        a0 through ap 
 y is the vector of n dependent variables; x is the vector of n (or the matrix of n×m) 
 independent variables; intercept forces the y-intercept through y = intercept 
 for x = 0. The output yields the least squares coefficients, in row format.  
xRegLinCov (y, x , coef   [,D] [,intercept])  Least squares covariance matrix   CM 
 y is the vector of n dependent variables, x is the vector of n (or the matrix of n×m) 
 independent variables, coef refers to the output of xRegLinCoef, and intercept forces  
 the y-intercept through y = intercept for x = 0. The output yields the covariance matrix. 



 

 

 

618

xRegLinErr (y, x, coef  [,D] [,intercept])  Standard deviations of LS coefficients  s0 through sp 
 y is the vector of n dependent variables; x is the vector of n (or the matrix of n×m) 
 independent variables; and intercept forces the y-intercept through y = intercept 
 for x = 0. The output yields the standard deviations of the coefficients, in row format.  

xRegLinEval (coef, x [,D])  Evaluating a least squares fit at a specified x-value  
 Coef refers to the output of xRegLinCoef, and x is the specific value at which the  
 fitting function is to be evaluated.  

xRegLinStat (y, x , coef  [,D] [,intercept])  More statistical least squares information         r2 and sf  
 y is the vector of n dependent variables, x is the vector of n (or the matrix of n×m) 
 independent variables, coef refers to the output of xRegLinCoef, and intercept forces  
 the y-intercept through y = intercept for x = 0. Outputs r2 and sf in row format. 
xRegPolyCoef (y, x, degree [,D] [,intercept])  Least squares coefficients       a0 through ap 
 y is the vector of n dependent variables; x is the vector of n independent variables; 
 degree is the highest polynomial order; and intercept forces the y-intercept through  
 y = intercept for x = 0. The default, intercept = TRUE, is to include a0 in the analysis.  
 In default mode (D = 35), xRegPolyCoef(B3:B84,C3:C84,10) aces the NIST LLS   
 test Filip.dat (see exercise 11.13.3) provided that (1) the y-values in B3:B84, and the  
 x-values in C3:C84, are in string format, i.e., preceded by an apostrophe, either 
 manually or, faster, with the instruction xCStr(xRoundR(number,15)), and (2) the  
 output data z are copied with the instruction = xCDbl(xRoundR((address,15))  
 where number is an input value read from the spreadsheet, and address an output  
 result displayed there. If (1) and/or (2) are disregarded, the output may ‘only’ agree  
 to pE = 14.0 instead of to pE = 15. Use a block-enter; the output is in row format. 
xRegPolyErr (y, x, degree , coef  [,D] [,intercept]) Standard deviations of LS coefficients s0 through sp  
 y is the vector of n dependent variables; x is the vector of n independent variables; 
 degree is the highest polynomial order; and the optional intercept forces the y-intercept  
 through y = intercept for x = 0. Do not forget to enter the coefficients from xRegPolyCoef!   

The default, intercept = TRUE, is to include a0 in the analysis. The output yields the  
standard deviations s of the coefficients.  

xRegPolyStat (y, x,degree , coef  [,D] [,intercept])  More statistical least squares information r2 and sf  
 y is the vector of n dependent variables; x is the vector of n independent variables; 
 degree is the highest polynomial order; and the optional intercept forces the y-intercept   

through y = intercept for x = 0. Do not forget to enter the coefficients from xRegPolyCoef!  The de-
fault, intercept = TRUE, is to include a0 in the analysis. The output yields r2 and the standard devia-
tions sf of the over-all fit of the model function to the data.   

xRegrL (y, x [,D] [,intercept] [,ε] [,tol])  Least squares coefficients obtained by SVD      a0 through ap 
 This function uses SVD rather than the traditional pseudo-inverse; y is the vector of n  
 dependent variables; x is the vector of n (or the matrix of n×m) independent variables; 
 and intercept forces the y-intercept through y = intercept for x = 0; ε is the resolution  
 (default: 10–D); tol (for tolerance, default: 0) specifies the largest absolute value that  
 should be considerd round-off error and therefore can be set to 0 (similar to Tiny).  
xRegrLC (y, x [,cf] [,D] [,intercept] [,ε] [,tol])  Least squares coefficients of complex data by SVD  

The extension of xRegrL to complex data. cf defines the complex format used;  
default = 1 for split format.  

D.6  Statistical functions  
Note: even though their names have the prefix x, the functions xGamma, xGammaLn, xGammaLog, xGammaQ and 
xBeta used to be double precision. John Beyers has now converted them to fully extended precision. If you have used  
them earlier in programs that plotted their output, make sure to use them now within an x CDbl() command  so that their  
outputs will still be read properly by the graph. While Excel’s functions treat numerical strings as numbers,  
Excel’s graphs do not recognize such strings as valid input data. 
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xGamma (x [,D]) Gamma function              Γ(x)                  
                                              Γ(n) = ±∞ for n a non-positive integer, Γ(n) = (n – 1)!, Γ(1/2) = √π.  
 xGamma(-101.01,50) = 1.01316813059536869258112405851033723855160984E-158, 
 xGamma(0.5,40) = xSqr(xPi(40),40) = 1.772453850905516027298167483341145182798,   
 xGamma(1000,50) = 4.0238726007709377354370243392300398571937486421071E+2564. 
 xGamma(0.000000001) = 999999999.42278427380593167581398533 for Ddefault = 35.  

xGammaLn (x [,D])  Natural logarithm of the gamma function                    ln Γ(x)                   
                                              xGammaLn(0.5,70) = xLn(xGamma(0.5,70),70) = xLn(xSqr(xPi(70),70),70) = 
 0.5723649429247000870717136756765293558236474064576557857568115357360689. 

xGammaLog (x [,D])  10-based logarithm of the gamma function                      log Γ(x)                   
                                              xGammaLog(1000,70) = xLog(xGamma(1000,70),,70) = xLog(xFact(999,70),,70) =  
 2567.604644222132848771423057804523691677114513162463461310044207289183. 

xGammaQ (x1 ,x 2 [,D])  Ratio of two gamma functions       Γ(x1)/Γ(x2)                   

                                                           xGammaQ(0.5,1000,25) = 4.404845845680923991421408E-2565, xGammaQ(0.5,1000,65) = 
 xDiv(xGamma(0.5,65),xGamma(1000,65),65) = xDiv(xSqr(xPi(70),70),xFact(999,65),65) =  
 4.4048458456809239914214080519445322777708010072456291610680796307E-2568.    

xBeta(x,y[,D]  Complete Beta function     B (x,y) =  ∫ −− −
1

0

11 )1( dttt yx

                                              where Β(x, y) = Γ(x) Γ(y) / Γ(x+y), provides an easy check on the function. 
 Let B1, B2, etc are cell addresses, then for x = 1.2, y = 3.4 and x+y = 4.6 we have  
 B1: xGamma("1.2",50) = 0.91816874239976061064095165518583040068682199965868, 
 B2: xGamma("3.4",50) = 2.9812064268103329717913686054439211818356413783808, 
 B3: xGamma("4.6",50) = 13.381285870932449355274522094100253203034374722681, 
 B4: xDiv(xMult(B1,B2,50),B3,40) = 0.2045581106435018057463802648086835068269, 
 finally in B5: xBeta("1.2","3.4") = 0.20455811064350180574638026480868351, and 
 xBeta("1.2","3.4",50) = 2.0455811064350180574638026480868350682689657512436E-1. 

xZeta (x [,D]) Riemann zeta function               ζ(x)                   
                                              ζ(x) = 0 for x a negative even integer, ±∞ for x = 1: xZeta(1) = #VALUE!,  
 xZeta(-101,50) = -7.2612008803606716303677281510706847232235031164793E+78, 
 xZeta(-9,60) = -7.57575757575757575757575757575757575757575757575757575757576E-3,   
 xZeta(0.999999) = -999999.42275565224980209723357694814, xZeta(0,600)= 0.5, 
 xZeta(1.000001) = 1000000.57729800435533, xZeta(50,21) = 1.00000000000000088818 
D.7  Statistical distributions  

type = 0 or FALSE (default) for the probability density f;  type = 1 or TRUE for the corresponding cumulative distribution F. 

xNormal (x, µ, σ   [,type] [,D])   Normal distribution             
πσ

σµσµ
2

)]2/()(exp[),,(
22−−

=
xxf   

 Extended-precision version of Excel’s NORMDIST:  
 xNormal(-1000,7,0.5,0,40) = 1.354506334060962146056106217684345437524E-880792, 
 xNormal(-10,7,0.5,,48)=7.58105280018573627361442359669669459333212880463E-252, 
 xNormal(0,7,0.5) = 2.1932131187779426125067829785218123E-43,     
 xNormal(10,7,0.5) = xNormal(10,7,0.5,0) = 1.2151765699646570973992615481363651E-8, 
 xNormal(45000,7,0.5) = 1.0582474958611311359386964761976518E-1306737131; 
 xNormal(-9876,7,0.5,1) = 9.6676869595648374723957510755689408E-84838294, 
 xNormal(-10,7,0.5,1,45) = 1.1138987855743793865819505555930236035018809E-253, 
 xNormal(3,7,0.5,1) = 6.2209605742717841235159951725881884E-16, 
 xNormal(12,7,0.5,1,50) = 0.99999999999999999999999238014697583947393402665675, 
 xNormal(14.6,7,0.5,1,50) = 1. 
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xNormalS (z[,type] [,D])   Standard normal distribution                 
π2

]2/exp[)(
2zzf −

=  

 Extended-precision version of NORM.S.DIST of Excel 2010, with zero mean and unit 
 st.  dev.: xNormalS(-1000,0,16) = xNormal(-1000,,16) = 2.290648437187064E-2171486, 
 xNormalS(-10,0) = xNormal(-10,,1) = 7.6945986267064193463390335800418772E-23, 
 xNormalS(0,0) = xNormal(0) = 0.39894228040143267793994605993438187, 
 xNormalS(10,0) = xNormal(10) = 7.6945986267064193463390335800418772E-23, 
 xNormalS(1000,0,21) = xNormal(1000,,21) = 2.29064843718706368675E-217148; 
 xNormalS(-1000, 1,21) = 7.0452236580171781353528161610508209E-217586, 
 xNormalS(-10, 1) = 7.6198530241605260659733432515993084E-24, 
 xNormalS(0, 1) = 0.5,    xNormalS(10,1) = 0.99999999999999999999999238014697584, 
 xNormalS(1000, ,1) = 1. 

xBinomial (k,  n,  p [,type] [,D])  Binomial distribution   
)!(!
)1(!),,(

knk
ppnpnkf

knk

−
−
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−

  

 k > 0, n > 0, p ≠ 1; typically, k and n are integer, with k ≤ n, and 0 ≤ p ≤ 1.   
 xBinomial(10,8,0.7) = xBinomial(10,8,0.7,0) = 0.3138613877777774857383467859235165,   
 xBinomial(100,80,0.7) = 9.276388034479817828650417593685876E-6, 
 xBinomial(100,80,0.5) = 8.2718061255302767487140869206996285E-25; 
 xBinomial(100,80,0.7,1) = 1.4483734111111107223573231024739338.  

xLogistic (x, µ, s [,type] [,D])  Logistic distribution               [ ]2/)(exp[1
]/)(exp[),,(
sxs

sxsxf
µ

µµ
−−−

−−
=   

 s > 0. xLogistic(1,1,0.5) = xLogistic(1,1,0.5,0) = 0.5, 
 xLogistic(0.1,1,0.5) = 0.24345868057417078321107988837114377, 
 xLogistic(0.5,1,0.5) = 0.39322386648296370507484946717181805, 
 xLogistic(2,1,0.5) = 0.20998717080701303469724836952085072, 
 xLogistic(10,1,0.5) = 3.0459958561616145970616505932086991E-8; 
 xLogistic(0.1,1,0.5,1) = 2.2648142878370235005474413358600984E-2, 
 xLogistic(0.5,1,0.5,1) = 0.14973849934787756480856989948056052, 
 xLogistic(1,1,0.5,1) = 0.3807970779778824440597291413023968, 
 xLogistic(2,1,0.5,1) = 0.76159415595576488811945828260479359, 
 xLogistic(10,1,0.5,1) = 0.88079706274790293129938019689418799. 

 

xLogNorm (x, µ, σ [,type] [,D])  Lognormal distribution  
πσ
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 x > 0. xLogNorm(0.1,1,0.5,,28) = 2.680284603881915428668405659E-9,  
 xLogNorm(1,1,0.5,,20) = xLogNorm(1,1,0.5,0,20) = 0.1079819330263761039,  
 xLogNorm(10,1,0.5) = 2.6802846038819136119445616856654493E-3; 
 xLogNorm(0.01,1,0.5,1) = 1.8139777883515688426389318351031983E-29,  
 xLogNorm(1,1,0.5,1) = 2.2750131948179207200282637166533437E-2,  
 xLogNorm(50,1,0.5,1) = 0.99999999712801243139612132792027695. 

xMaxwell (x, a [,type] [,D])   Maxwell distribution       π/4),( 32 2

aexaxf ax−=  
 Note that different authors define this distribution differently; here we use a = m/2kT  
 where m is mass, k is the Boltzmann constant, and T the absolute temperature.  

 xMaxwell(0.02,1,,28) = xMaxwell(0.02,1,1,28) = 9.02342324549578354005919324E-4, 
 xMaxwell(1,1) = 0.83021499484118940668053649888267473, 
 xMaxwell(5,1) = 7.8354332655086676541216841613105858E-10; 
 xMaxwell(0.02,1,1) = 6.0165781054863134065267945144474112E-6, 
 xMaxwell(1,1,1) = 0.42759329552912016600095238564127189, 
 xMaxwell(5,1,1) = 0.99999999992010820755048528860859481. 
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xRayleigh (x, σ [,type] [,D])   Rayleigh distribution                                    22/ /),(
22

σσ σxxexf −=
 x ≥ 0. xRayleigh(0.01,1,,60) = xRayleigh(0.01,1,0,60) =  
 9.99950001249979187740640069032792883187110465298047034833696E-3, 
 xRayleigh(1,1) = 0.60653065971263342360379953499118045, 
 xRayleigh(10,1) = 1.9287498479639177830173428165270126E-21; 
 xRayleigh(0.01,1,1) = 4.9998750020833075000834902025581322E-5, 
 xRayleigh(1,1,1) 0.39346934028736657639620046500881955, 
 xRayleigh(10,1,1) = 0.99999999999999999999980712501520361. 

xWeibull ((x, k, λ [,type] [,D])   Weibull distribution        
kx
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 x ≥ 0. xWeibull(0.01,1,0.5,,60) = xWeibull (0.01,1,0.5,0,60) = 
 1.96039734661351060362544885658056190613736410084899623650741,  
 xWeibull(1,1,0.5) = 0.27067056647322538378799898994496881, 
 xWeibull(10,1,0.5) = 4.122307244877115655931880760311642E-9; 
 xWeibull(0.01,1,0.5,1) = 1.9801326693244698187275571709719047E-2, 
 xWeibull(1,1,0.5,1) = 0.8646647167633873081060005050275156, 
 xWeibull(10,1,0.5,1) = 0.99999999793884637756144217203405962. 
 

D.8  Operations with complex numbers    
Use the Configuration dialog box (under the X-Edit button on the XN toolbox) to select either i or j for √(–1). Here we will 
use j. Complex numbers will be denoted by z = a + j b, and must be defined in terms of their separate, real and imaginary 
components, a and b. The notation has been simplified by allowing single-cell or split formatting of both input and output, 
simply by highlighting a single cell or specifying two (horizontally or vertically) adjacent cells, see Fig. 11.12.6. Here we 
will use (except for the first three functions) the default (1, horizontally split) format for both input and output. (Note that this 
simplified notation applies only to operations on individual complex numbers, as considered in this section; for arrays of 
complex numbers this short notation would be ambiguous, and cf must be specified when it differs from the chosen default.)    

In B1 we have used =xCplx(3,4) to place 3+4j, and in E1 likewise =xCplx("5.6","7.8") to deposit 5.6+7.8j. The complex 
numbers z1 = 3 + 4 j and z2 = 5.6 + 7.8j are stored as strings in row 2:  as ′3 in B2, ′4 in C2, ′5.6 in E2, and ′7.8 in F2. They 
are also stored as regular spreadsheet numbers in row 3, i.e.,as 3 in B3, as 4 in C3, as 5.6 in E3, and as 7.8 in F3. All exam-
ples will assume D = 35 unless otherwise indicated. Array output in adjacent cells will be shown as separated by a comma, 
and must of course be entered with the block enter combination Ctrl∪Shift∪Enter.    

xCplx (z [,D]) Converts Re(z) and Im(z) into a complex single-cell format  
 xCplx(3,4) = 3+4j;  xCplx("5.6","7.8") = 5.6+7.8j  

xReal (z [,D]) Real part of a single-cell complex number                     a = Re(a + jb) 
 xReal(xCplx(3,4)) = 3  

xImag (z [,D]) Imaginary part of a single-cell complex number                b = Im(a + jb) 
 xImag(xCplx(3,4)) = 4  

xCplxAbs (z [,D]) Absolute value of single-cell format  |z| = jba + = 22 ba +   
 xCplxAbs(B1) = xCplxAbs(B2:C2) = xCplxAbs(xCplx(3,4)) = 5  

xCplxArg (z [,D]) Complex argument       arg(z) = arctan(b/a)  
 xCplxArg(B1,70) = xCplxArg(B2:C2,70) = xCplxArg(B2:C2,70) =  
 0.9272952180016122324285124629224288040570741085722405276218661774403957 

xCplxNeg (z [,D]) Negation          –z = –(a + j b) = – a – j b  
 xCplxNeg(B1) = –3–4j;    xCplxNeg(B2:C2) = xCplxNeg(B3:C3) = –3,  –4   

xCplxConj (z [,D]) Conjugate                                 z* = a – j b 
 xCplxConj(B1) = 3–4j;   xCplxConj(B2:C2) = xCplxConj(B3:C3) = 3,  –4   
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xCplxAdd (z1, z2 [,D])   Addition      z1+z2  = (a1 + a2) + j (b1 + b2)  
 xCplxAdd(B1,E1) = 8.6+11.8j;    xCplxAdd(B2:C2,E2:F2) = 8.6,  11.8; 
 xCplxAdd(B3:C3,E3:F3,21) = 8.59999999999999964473,  11.7999999999999998224 

xCplxSub (z1, z2 [,D]) Subtraction      z1–z2  = (a1 – a2) + j (b1 – b2) 
 xCplxSub(B1,E1) = -2.6-3.8j;    xCplxSub(B2:C2,E2:F2) = -2.6,  -3.8; 
 xCplxSub(B3:C3,E3:F3,21) = -2.59999999999999964473,  -3.79999999999999982236 

xCplxMult (z1, z2 [,D])   Multiplication                                              z1 z2  = (a1a2–b1b2) + j (a1b2+a2b1)  
 xCplxMult(B1,E1) = -14.4+45.8j;    xCplxMult(2:C2,E2:F2) = -14.4,  45.8; 
 xCplxMult(B3:C3,E3:F3,21) = -14.4000000000000003553,  45.799999999999998046 

xCplxPow (z, n [,D])   Integer power                                                  zn  = )]/arctan(exp[22 banba +  
 xCplxPow(B1,2) = -7+24j;   xCplxPow(B2:C2,2) = xCplxPow(B3:C3,2) = -7,   24  

 

xCplxRoot (z, n  [,D])   Integer root                                              z1/n  = n jba +   
 xCplxRoot(B1,2) = xCplxRoot(B3:C3,2) = 2+j,   –2–j;   xCplxRoot(E1,2) =  
 xCplxRoot(E2:F2,2,21) = 2.75699864955772539922+1.41458175927131251328j in one 
 cell, and -2.75699864955772539922-1.41458175927131251328j in the next;    likewise, 
 xCplxRoot(E3:F3,2,21) = 2.75699864955772533513+1.41458175927131251395j in one 
 cell, and -2.75699864955772533513-1.41458175927131251395j in the next. 
 

xCplxSqr (z  [,D]) Square root      z½  = jb+a   
 xCplxSqr(B1) = 2+j;   xCplxSqr(B2:C2) = xCplxSqr(B3:C3) = 2,  1 
 xCplxSqr(E1,19) = xCplxSqr(E2:F2,19) = 2.756998649557725399, 1.414581759271312513 
 xCplxSqr(E2:F2,19) = 2.756998649557725335, 1.414581759271312514 

xCplxDiv (z1, z2 [,D])   Division                                                   z1/z2  = 2
2

2
2

12212221 )()(
ba

babajbbaa
+

+−++   

 xCplxDiv(B2:C2,E2:F2,21) = 0.52060737527114967462, -1.08459869848156182213E-2 
 xCplxDiv(B3:C3,E3:F3,21) = 0.520607375271149693469, -1.08459869848156286485E-2  
 

      xCplxInv (z [,D]) Inversion                1/z =
jba +

1 = 22 ba
jba

+
−   

 xCplxInv(B1) = 0.12-0.16j when placed in one cell; when placed in two cells,  
 xCplxInv(B1) = xCplxInv(B2:C2) = xCplxInv(B3:C3)= 0.12, –0.16; 
    xCplxInv(E2:F2,21) = 0.060737527114967462039,  -8.45986984815618221258E-2 
 xCplxInv(E3:F3,21) = 6.07375271149674626325E-2,  -8.45986984815618263928E-2 

xCplxExp (z [,D]) Exponential         ez  = ea cos(a) + j eb cos(b)  
 xCplxExp(E1,28)=14.59097054392448671115070825+270.0324895489463602631116766j 
 xCplxExp(E2:F2,21) = 14.5909705439244867112,   270.032489548946360263 
 xCplxExp(E3:F3,21) = 14.5909705439245294948,   270.032489548946261736 

xCplxLn (z [,D]) Natural logarithm        ln z  
 In one cell: xCplxLn(E1,21) = 2.26198006528127407189+0.948125538037829317382j, 
 in two: xCplxLn(E1,70) = xCplxLn(E2:F2,70) =  
 2.261980065281274071885982930024169450064511264424455256333274238956, 
 0.948125538037829317381598341175288215151321283505545372210918578809796; 

 xCplxLn(E3:F3,25) = 2.261980065281274035279931,   0.9481255380378293366479415 

xCplxLog (z, b [,D]) Logarithm to base b                logb (z) = ln(z) / ln(b)  
 Careful: xCplxLog(E1,,21) = 0.982365460526814654246+0.411765689321380975201j 
 which assumes that the non-specified base is 10, whereas xCplxLog(E1,21) =  
 0.74296711932683140068942681618616545+0.3114201184034633742533121651615121j 

 for log21(z) with the default number of decimals, here 35. If you need the 10-based log, use: 
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xCplxLog10 (z [,D]) 10-based logarithm                                          log(z) = log10(z) = ln(z) / ln(10) 
 In two cells: xCplxLog10(E1,25) = xCplxLog10(E2:F2,70) =  
 0.9823654605268146701442103566059571819809685627552493938363525724175293, 
 0.4117656893213809668342048131500706165852505219562462786489498073138795; 

 xCplxLog10(E3:F3,25) = 0.982365460526814654246404, 0.4117656893213809752014713 

xCplxLog2 (z [,D]) 2-based logarithm    log2(z) = ln(z) / ln(2)  
 xCplxLog2(E2:F2,25)= 3.263347422770987814603177,  1.367856011867356597452088 
 xCplxLog2(E3:F3,25) =3.263347422770987761791808,  1.367856011867356625247546 

xCplxSin(z [,D]) Sine    sin (z)  
 xCplxSin(E2:F2,25)= -770.335431725789249221414,    946.4236495468643587804233 
 xCplxSin(E3:F4,25)= -770.3354317257894486197362,  946.4236495468639169837239 

xCplxCos (z [,D]) Cosine    cos (z) 
 xCplxCos(E2:F2,25)= 946.4239673233332876174362,  770.3351730737666499652134 
 xCplxCos(E3:F4,25)= 946.4239673233328458207013,  770.3351730737668493633767 

xCplxTan (z [,D]) Tangent    tan (z) 
 xCplxTan(E2:F2,24) = -3.2877408328165508373533E-7, 0.999999931837917456442433 
 xCplxTan(E3:F4,24) = -3.2877408328165524897145E-7,  0.999999931837917456442642 

xCplxASin (z [,D]) Inverse sine   arcsin (z) 
 xCplxASin(E2:F2,24)= 0.620108349818012666322386,  2.95600293720697536127987 
 xCplxASin(E3:F4,24)= 0.620108349818012646903013,  2.95600293720697532483704 

xCplxACos (z [,D]) Inverse cosine   arccos (z) 
 xCplxACos(E2:F2,24)= 0.950687976976883952908935,  -2.95600293720697536127987 
 xCplxACos(E3:F4,24)= 0.950687976976883972328309,  -2.95600293720697532483704 

xCplxATan (z [,D]) Inverse tangent     arctan (z) 
 xCplxATan(E2:F2,24) = 1.50969874144921909210512,  8.44859768081672965961273E-2 
 xCplxATan(E3:F4,24) = 1.50969874144921909146551,  8.44859768081673008713949E-2 

xCplxSinH (z [,D]) Hyperbolic sine     sinh (z) 
 xCplxSinH(E2:F2,24) = 7.29538551206624025612712,  135.018091013076278249296 
 xCplxSinH(E3:F4,24) = 7.29538551206626164758967,  135.018091013076228986589 

xCplxCosH (z [,D]) Hyperbolic cosine     cosh (z) 
 xCplxCosH(E2:F2,24) = 7.29558503185824645502359, 135.014398535870082013816 
 xCplxCosH(E3:F4,24) = 7.29558503185826784721294, 135.014398535870032749833 

xCplxTanH(z [,D]) Hyperbolic tangent     tanh (z) 
 xCplxTanH(E2:F2,24) = 1.00002718952482972149739, 2.94696926173800019499848E-6 
 xCplxTanH(E3:F4,24) = 1.00002718952482972151566, 2.94696926173801194879248E-6 

xCplxASinH (z [,D]) Inverse hyperbolic sine   arsinh (z) 
 xCplxASinH(E2:F2,24) = 2.95426910101325167773266,  0.945549735665370431458319 
 xCplxASinH(E3:F4,24) = 2.95426910101325164096493,  0.945549735665370450568323 

xCplxACosH (z [,D])   Inverse hyperbolic cosine   arcosh (z) 
 xCplxACosH(E2:F2,24) = 2.95600293720697536127987,  0.950687976976883952908935 
 xCplxACosH(E3:F4,24) = 2.95600293720697532483704,  0.950687976976883972328309 

xCplxATanH (z [,D])   Inverse hyperbolic tangent   artanh (z) 
 xCplxATanH(E2:F2,24)=6.03776070460713078765599E-2, 1.48608980485008744950066 
 xCplxATanH(E3:F4,24)=6.03776070460713084243571E-2, 1.48608980485008744524278 
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xCplxPolar(z [,D]) Convert to polar         z =  ρ ejθ  
 xCplxPolar(E1,,35) = xCplxPolar(E2:F2,,35) = xCplxPolar(E2:F2) = 
 9.60208310732624309126871450256650,   0.94812553803782931738159834117528822 
 xCplxPolar(E3:F4,,25) = 9.602083107326242739774361, 0.9481255380378293366479415 

xCplxRect (z [,D]) Convert to rectangular       z =  ρ { cos (θ   ) + j sin (θ   )}   
 xCplcRect(xCplxPolar(E1,,35),21)    =   5.6,   7.8000000000000000000000000000000001, 
 xCplcRect(xCplxPolar(E2:F2,35),21) = 5.6,   7.8000000000000000000000000000000001,   
 xCplcRect(xCplxPolar(E3:F3,21),21) = xCplcRect(xCplxPolar(E3:F3,500),21) = 
 5.59999999999999964472863212,  7.79999999999999982236431606. 

D.9  Matrix and vector operations     
D.9.1  Standard operations 

We denote vectors as v with elements vi. Matrices are either square real S, rectangular real R or (square or rectangular) 
complex C, all with elements mij. cf denotes the complex format used: 1 for split (= default), 2 for interspersed, 3 for Ex-
cel’s string format. The number of rows of a vector or matrix is indicated by r, the number of colums by c. Absolute ele-
ment values mij smaller than ε  are set to zero as probable rounding errors; the default value for ε  is 1E–D. Noninteger 
numbers should be placed between quotation marks when their exact rather than their Excel-stored values are to be used. 
We will use the compact matrix notation {m11, m12, …; m21, m22, …; m31, m32, …; …} to denote a matrix with elements 
mij where commas separate individual elements in the same row, and semicolons separate different rows. Ddefault = 35.  

xMAbs (R [,D]) Absolute value of a real matrix             ||R|| = ∑∑
= =

m

i

n

j
jim

1 1

2
, )(  

 xMAbs({1,2;"3.1",-4}) = 5.5326304774492214410001161638167525;  
 xMAbs({1,2; 3.1,-4})  =  5.5326304774492214907658309046178264  

 xMAbsC (C [,cf] [,D]) Absolute value of a complex matrix                ||C|| = ∑∑
= =

m

i

n

j
jim

1 1

2
, )(  

 xMAbsC({1,2,0,-3; "3.1",-4,-1,0;6,5,2,1}) = 10.325211862233142574713865204941196;  
 xMAbsC({1,2,0,-3; 3.1,-4,-1,0; 6,5,2,1})  =  10.325211862233142601380176151460634  
xMAdd (R1, R2 [,D]) Addition of two real matrices             R1 + R2 
 R1 and R2 must have the same size m×n, i.e., c1 = c2 and r1 = r2. 
xMAddC (R1, R2 [,cf] [,D])   Addition of two complex matrices             R1 + R2 
 R1 and R2 must have the same size m×n. 
xMSub (R1, R2 [,D]) Subtraction of two real matrices              R1 – R2 
 R1 and R2 must have the same size m×n. 
xMSubC (R1, R2 [,cf] [,D])   Subtraction of two complex matrices              R1 – R2 
 R1 and R2 must have the same size m×n. 
xProdScal (v1, v2 [,D])    Scalar product of two vectors (or matrices)   v1 • v2 
 v1 and v2 must have the same size m. The scalar product is zero if v1 and v2  
 are perpendicular. This function can also be applied to two matrices R1 and R2  
 where c1 = r2 in which case xProdScal(R1,R2) yields the product R1

T R2 

xProdScalC (v1, v2 [,cf] [,D])  Complex scalar product of two vectors   v1 • v2 
 v1 and v2 must have the same size m. The scalar product is zero if v1 and v2 are perpendicular.  
xProdVect (v1, v2 [,D])    Vector product     v1 × v2 
 v1 and v2 must have the same size m. 
xMMult (R1, R2 [,D]) Multiplication of two real matrices    R1 R2 
 When R1 is m×p , R2 must be p×n, i.e., c1 = r2. 
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xMMultC (C1, C2 [,cf] [,D])  Multiplication of two complex matrices    C1 C2 
 When R1 is m×p , R2 must be p×n, i.e., c1 = r2. 
xMMultS (R, a [,D])  Multiplication of a real scalar a and a real matrix R   a R  
 Note the order of terms in the argument: first the matrix R, then the scalar a,  
 regardless of the matrix size. aR will have the size of R. 
xMMultSC (R, z [,cf] [,D])  Multiplication of a complex scalar z and a complex matrix C z C  
 Note he order of terms in the argument: first the matrix C, first, then the scalar z, regardless of  
 The matrix size. This order is the reverse of that in the function name. zC will have the size of C. 
xMPow (S, n [,D]) Integral power of a square, real matrix S    Sn   
 n must be a positive integer. 
xMPowC (C, n [,cf] [,D])   Integral power of a complex matrix C    Cn   
 n must be a positive integer. 
xMInv (S [,D]) Inversion of a square real matrix    S–1   
 Uses Gauss-Jordan diagonalization with partial pivoting.  
xMInvC (S [,cf] [,D]) Inversion of a square complex matrix     C–1   
 Uses Gauss-Jordan diagonalization with partial pivoting.  
xMDivS (R, a [,D])   Division of a real matrix R by a real scalar a                 R / a  
 Note the order of terms in the argument: first the matrix R, then the scalar a,  
 regardless of the matrix size. R / a will have the size of R. 
xMPseudoInv (R [,D])   Pseudo-inverse of a rectangular real matrix     R+ = V Σ-1 UT  
 based on SVD. When R is m×n, R+ is n×m. When R is square and nonsingular, its  
 pseudoinverse is equal to its inverse. Uses Gauss-Jordan diagonalization with partial pivoting.  

xMPseudoInvC (C [,cf] [,D])   Pseudo-inverse of a complex matrix     C+ = V Σ-1 UH 
 based on SVD. When R is m×n, R+ is n×m. When R is square and nonsingular, its  
 pseudoinverse is equal to its inverse. Uses Gauss-Jordan diagonalization with partial pivoting.  
xMExp (S [,n] [,D]) Exponentiation of a square real matrix      eS  
 Exp(S) = 1 + S + S2/2 + S3/6 + S4/24 + … + Sn/n!  
 When n is deleted, the series is continues until it converges.    

xMExpC (S [,n] [,cf] [,D])   Exponentiation of a square complex matrix        eC   
 Exp(S) = 1 + S + S2/2 + S3/6 + S4/24 + … + Sn/n!  
 When n is deleted, the series is continues until it converges.    

xMExpErr (S ,n [,D])   Error term in xMExp     !nnS  
 Note that n is required.  
xMExpErrC (C ,n [,cf] [,D])   Error term in xMExpC     !nnC  
 Note that n is required.  
xMMopUp (S [,errMin] [,cf] [,D])   Cleans up matrix errors close to zero       
 Replaces matrix elements smaller than ErrMin or ε  by 0.   

D.9.2  More sophisticated matrix operations 
xMDet (S [,D]) Determinant of a square real matrix      |S| 
 Uses Gauss- Jordan diagonalization with partial pivoting. Returns "?" when S is singular.  
 xMDet({1,2;"3.1",-4}) = -10.2  
 xMDet({1,2; 3.1,-4})  =  -10.20000000000000017763568394  
xMDetC (C [,D]) Determinant of a square complex matrix       |C| 
 xMDetC({1,2,0,-3;"3.1",-4,1,7}) = -13.2, 14.3;     xMDetC({1,2,0,-3;3.1,-4,1,7}) =  
 -13.20000000000000017763568394, 14.30000000000000026645352591  
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xMCond (R [,D]) Condition number of a real matrix       κ 
 Based on SVD. xMCond({1,2;"3.1",-4}) = 2.6191817659615200272394889923128097; 
 xMCond({1,2;3.1,-4}) = 2.6191817659615200292582110124456817 
 

xMCondC (C [Cformat ,D, ε, tol])   Condition number of a complex matrix      κ 
 Based on SVD. xMCondC({1,2,0,-3;"3.1",-4,1,7},,21) = 4.37608205969300766727,  
 4.37608205969300766727;   xMCondC({1,2,0,-3; 3.1,-4,1,7},,21) =  
 4.37608205969300761817, 4.37608205969300761817  
xMpCond (R [Cformat ,D, ε, tol])   –log10 of the condition number of a real matrix         –log10 (κ )  
 xMpCond({1,2;"3.1",-4}) = -0.41816563863710134091248426474409013;  
 xMpCond({1,2; 3.1,-4})  =  -0.41816563863710134124721469286252258  
xMpCondC (C [Cformat ,D, ε, tol]) –log10 of the condition number of a complex matrix  –log10 (κ ) 

 xMpCondC({1,2,0,-3;"3.1",-4,1,7},,2) = xMpCondC({1,2,0,-3;3.1,-4,1,7},,2) = -0.64  

xMNormalize (R [,normtype] [,tiny] [,D])   Normalize a real matrix           ∑ 2
ii vv  

 Normtype: all nonzero vertical vectors normalized; default = 2 for Euclidean norm.  

 R = 
 6

, xMNormalize(R,,,21) =  




 − 54
1.3









− 185420247636339279548.08.0

760212657067733921049.06.0

xMNormalizeC (C [,normtype] [,Cformat] [,tiny] [,D])   Normalize a complex matrix        
 Normtype: all nonzero vertical vectors normalized; default = 2 for Euclidean norm.  

 C = 
 06

, xMNormalize(R,,,9) =  




 −
−

8954
71.3









−

−
1789352217.0633927955.08.0
06139406135.0773392105.06.0

xMT (R) Transpose a real matrix      RT 

 R = 
 6

, xMT(R) = 


, do not specify D. 




 − 54
1.3






 − 51.6
43

xMTC (C) Transpose a complex matrix      CT 

 C = 
 06

, xMTC(C) = , do not specify D. 




 −
−

8954
71.3









−

−
8051.6
9743

 

xMTH (C) Hermitean (conjugate, adjoint) transpose a complex matrix    CH 

 C = 
 06

, xMTH(C) = , do not specify D. 




 −
−

8954
71.3









−−
−

8051.6
9743

D.9.3  Matrix decompositions 
xMLU (S [,Pivot] [,D])   LU decomposition  using Crout’s algorithm     L U 
 Returns the Lower and Upper triangular matrices that satisfy  
 S = L U or, when Pivot is True, S = P L U where P is the permutation  
 matrix. If Pivot = False, the first diagonal element of S cannot be zero. 
xMCholesky (S [,D]) LL decomposition      L LT 
 Cholesky decomposition of a square matrix.  
xSysLin (A, B [,D]) Solves simultaneous real linear equations              X = A–1 B 
 Uses the Gauss-Jordan  diagonalization; A, X and B must be real; A must be m×m;  
 X and B must both be m×1 or m×n. Solves A X = B to yield X = A–1 A X = A–1 B. 
xSysLinC (A, B [,D]) Solves simultaneous complex linear equations             X = A–1 B 
 Equivalent to xSysLin for complex arrays. A, X and B must be complex; A must  
 be m×m; X and B must be m×1 or m×n. Solves A X = B to yield X = A–1 A C = A–1 B. 
xGaussJordan (M, n, m, Det, Algo, D)  Gauss-Jordan elimination    

 Uses partial pivoting. 
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xSVDD (R [,D] [,ε ]) Matrix Σ from SVD of a real rectangular matrix R      Σ 
 SVD used in “compact” format; when R is m×n, and p = min(m,n), Σ is p×p.  
 ε is the ignored rounding error; default: ε ≤ 1E–D.  
xSVDDC (C [,c] [,D] [,ε ])   Matrix Σ from SVD of a complex rectangular matrix C     Σ 
 SVD used in “compact” format; when C is m×n, and p = min(m,n), Σ is p×p.  
 Default format: c = 1 (split). ε is the ignored rounding error; default: ε ≤ 1E–D. 
xSVDU (R [,D] [,ε ]) Matrix U from SVD of a real rectangular matrix R         U 
 SVD used in “compact” format; when R is m×n, and p = min(m,n), U is n×p.  
 ε is the ignored rounding error; default: ε ≤ 1E–D. 
xSVDUC (C [,c] [,D] [,ε ])   Matrix U from SVD of a complex rectangular matrix C     U 
 SVD used in “compact” format; when C is m×n, and p = min(m,n), U is n×p.  
 Default format: c = 1 (split). ε is the ignored rounding error; default: ε ≤ 1E–D.  
xSVDV (R [,D] [,ε ]) Matrix V from SVD of a real rectangular matrix R      V 
 SVD used in “compact” format; when R is m×n, and p = min(m,n), V is m×p.  
 ε is the ignored rounding error; default: ε ≤ 1E–D. 
xSVDVC (C [,c] [,D] [,ε ])   Matrix V from SVD of a complex rectangular matrix C     V 
 SVD used in “compact” format; when C is m×n, and p = min(m,n), V is m×p.  
 Default format: c = 1 (split). ε is the ignored rounding error; default: ε ≤ 1E–D. 

D.10  Miscellaneous functions     
D.10.1  Manipulating numbers   

xCStr (x [,D]) Converts a number x from double precision to string format 
 Ignores Ddefault; when D is deleted, as many digits as needed (up to Digits_Limit) are displayed.  
 xCStr(1) = 1; xCStr(0.1) = 0.1000000000000000055511151231257827021181583404541015625; 
 xCStr(″1.1″) = 1.1; xCStr(1.1) = 1.100000000000000088817841970012523233890533447265625;  
 xCStr(″4.1″) = 4.1; xCStr(4.1) = 4.0999999999999996447286321199499070644378662109375. 
 When B2 holds the number 4.1, xCStr(B2) = xCStr(4.1), see above, but xCStr(″″&B2&″″) = 4.1,  
 i.e., the stored, binary value of x is read unless its spreadsheet value is selected with double quotes. 
 D can be used to limit the output: xCStr(B2,20) = xCStr(4.1,20) = 4.0999999999999996447.  

 

xDec (a) Decimal part of number a  
 xDec(2.99) = 0.99; xDec(–2.99) = –0.99. 
xTrunc (a) Truncation  
 xTrunc(2.99) = 2; xTrunc(–2.99) = –2; xTrunc(a) + xDec(a) = a. 
xRound (a, [d] [,D]) Round  
 Rounds a to d decimal places; default: d = 0. If least significant digit is 5, rounds it away  
 from zero. xRound(1.5) = 2; xRound(2.5) = 3; xRound(–1.5) = –2; xRound(–2.5) = –3.  
vRoundR (a [,s] [,D]) Relative round  

 Uses unbiased (banker’s) relative rounding. Rounds the mantissa of a to s significant  
 digits, while leaving its exponent alone. Note: the default (with s unspecified) is 15.  

xRoundR (a [,s] [,D]) Relative round  
Uses standard rounding to round the mantissa of a to s significant digits,  
while leaving its exponent alone. Note: the default (with s unspecified) is 15.  

xInt (a) Integer part  
 Rounds down: xInt(2.99) = 2; xInt(–2.99) = –3. Warning: in general, for a < 0, xInt(a) + xDec(a) ≠ a. 
xComp (a [,b])  Comparison of value of a with b  
 xComp(a, b) = 1 for a > b, xComp(a, b) = 0 for a = b,  
 xComp(a, b) = –1 for a < b. The default assumes that b = 0.   
xComp1 (a)  Comparison of absolute value of a with 1  
 xComp1(a) = 1 for a > 1, xComp1(a) = 0 for a = 1, xComp1(a) = –1 for a < 1.  
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xDgt (a) Digit count  
 xDgt(–2.99) = 3; xDgt(–0.00299) = 6. 
xDgtS (a) Significant digit count  

 Treats all trailing zeros as not significant: xDgtS(1234000) = 4;  
 xDgtS(1.234) = 28 (counting significant digits in corresponding string number);  
 xDgtS(“–0.0029900”) = 3; xDgtS(–0.0029900) = 28. 

 

xCDbl (a) Converts from extended to double precision                
 Converts an extended precision numerical string into a double precision number.  
 Example: xPi() = 3.1415926535897932384626433832795029; xCDbl(xPi()) = 
 3.1415927 with up to 15 digits depending on the cell formatting. 

x2Dbl (a) Converts from extended to double precision                
 Slower but in rare cases more precise version of xCDbl.  

D.10.2  Formatting instructions 
xFormat (a [,Digit_Sep])   Format   
 formats a string ′a in comma-separated groups of Digit_Sep; default: Digit_Sep = 6.  
 For a = ′1234567.89012345, xFormat(a) = 1,234567.890123,45 and xFormat(a,3) =  
 1,234,567.890,123,45; when a = 1234567.89012345, a spreadsheet number, the result  
 will reflect the stored value: xFormat(a) = 1,234,567.890,123,449,964,448,809,624. 
xUnformat (a) Unformat    
 Removes formatting commas from a 
xSplit (a) Splits scientific notation over two cells 
 Converts a number into scientific notation, spread over two adjacent cells.  
 xSplit(a) = {1.234566999999999941758246258, 89} for a = 1.234567E+89;  
 xSplit(a) = {1.234567, 896} for a = 1234567E890 or a = 1234567E+890;  
 xSplit(a) = {1.234567, -884} for a = 1234567E-890. 
xMantissa (a) Mantissa of a in scientific format 
 Yields the mantissa of a numerical string a, e.g., xMantissa(a) = -123.4567 for a = 
 ′-1.234567E-890 but -1.23456000000000004997855423 for a = –1.234567E-890.   
xExponent (a)           Exponent of a in scientific format        
 Yields the exponent of a numerical string a or a number in the cell, e.g.,  
 xExponend(a) = -890 for either a = –1.234567E-890 or a = ′-1.234567E-890  
 because the exponent is always integer.   
xCvExp (mant [,exp])   Converts scientific notation into mantissa and exponent 
 =xCvExp(-123.456,789) yields -1.234560000000000030695446185E+791, and  
 =xCvExp(-0.0000123456,0) generates -1.234559999999999916351148266E-5,  
 in both cases showing decimal-to-binary conversion errors. You can avoid these  
 by setting exp to zero: =xCvExp("-0.0000123456",0) leads to –1.23456E-5.   

 

D.10.3  Logical functions 
x_And (a,b ) Boolean logic AND                   AND(a,b)  

 x_And(a,b) = True only when a ≠ 0 (or FALSE) and b ≠ 0 (or FALSE);  
 a blank cell does not count as 0 (or FALSE).  

x_Or (a,b) Boolean logic OR                   OR(a,b)  
 x_Or(a,b) = True when a ≠ 0  (or FALSE)or b ≠ 0  (or FALSE)or both,  
 a blank cell doesn’t count.  

x_If  (a,b)   Boolean logic IF                   IF()  
 x_If(a,b,c) = b when a = 1 or TRUE, x_If(a,b,c) = c when a = 0 or FALSE  

x_Not  (a) Boolean logic NOT                   NOT(a)  
 x_Not(a) = True when a = 0 (or FALSE). Non-zero numbers and strings evaluate as True. 
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D.10.4  Polynomial functions 
xPolyTerms  (poly [,D])   Extract the coefficients of a polynomial                    

 When poly is, e.g., 'x^5-2.1+3*x^3+4*x^2 in cell B2,  
 xPolyTerms(B2) = {–2.1, 0, 4, 3, 0, 1} 

xPoly (a,coef [,D]) Evaluate a polynomial at x                     
 When the polynomial is defined by its coefficients coef in, e.g.,  
 B4:G4 as {–2.1, 0, 4, 3, 0, 1}, xPoly(3,B4:G4) = –374.3.  

xPolyAdd(poly1,poly2 [,D])   Adds two polynomials in x                    
 The polynomials are poly1 and poly2. Block-enter their coefficients 
 in the same order. Missing coefficients will be interpreted as zero.  
 If enumerated in the argument, use ,, to indicate a missing coefficient.   

xPolySub  (poly1,poly2 [,D])   Subtracts two polynomials in x                    
 The polynomials are poly1 and poly2. Block-enter their coefficients 
 in the same order. Missing coefficients will be interpreted as zero.  
 If enumerated in the argument, use ,, to indicate a missing coefficient.   

xPolyMult  (poly1,poly2 [,D])   Multiplies two polynomials in x                    
 The polynomials are poly1 and poly2. Block-enter their coefficients 
 in the same order. Missing coefficients will be interpreted as zero.  
 If enumerated in the argument, use ,, to indicate a missing coefficient.  
 Assign space in the highlighted area for the higher-order cross-terms.    

xPolyDiv  (a [,D]) Divides two polynomials in x                    
 The polynomials are poly1 and poly2. Block-enter their coefficients 
 in the same order. Missing coefficients will be interpreted as zero.  
 If enumerated in the argument, use ,, to indicate a missing coefficient.   

xPolyRem (a [,D]) The remainder of polynomial division                    
 The polynomials are poly1 and poly2. Block-enter their coefficients 
 in the same order. Missing coefficients will be interpreted as zero.  
 If enumerated in the argument, use ,, to indicate a missing coefficient.   

D.10.5  Integer operations 
xPowMod (a,p [,D]) Modular power           ap  mod m 

 Returns the remainder of the integer division ap, i.e., ap – m (ap
 \  m), e.g.,  

 xPowMod(10,3,7) = 6 because 103 = 1000 = 142*7 + 6 where 142*7 = 994.  
 Useful for finding the remainders of divisions of very large integers, as in  
 xPow(12,34567) = 1.1432260930295413791181531725537944E+37304 with 
 more than 3700 decimals, yet xPowMod(12,34567,89)  = 52. This is the  
 remainder of dividing 1234567 by 89 despite the fact that XN-version used,  
 XN6051–7A, cannot hold more than 630 decimals. 

xDivMod (a, b, m) Modular division                 (a/b) mod m 
 where a and b are integers, and m is a positive prime integer;  
 otherwise the function returns “?”. Example: xPow(12,3939393) =  
 1.1127850718610753473503619921808241E+4251319, i.e., it is a  
 number with more than 4 million digits! While XN cannot perform  
 the regular division of such a giant number by the prime number  
 3001, it can find xPowMod(12,3939393,3001) = 2758. 

D.10.6  Getting (& setting) XN configuration information   
Here are a number of functions that allow you to read or “get” configuration settings, and to define or “set”  
them. Since each Get function has a corresponding set counterpart, only the former are listed here; these Get  
instructions must be followed by empty argument brackets to identify them as functions. A corresponding Set  
function must have a replacement value as its argument, and is meant for use within a VBA function or macro.   
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GetDigitsLimit ()     Specifies the current DigitsLimit   
 For XN.xla605 the function =GetDigitsLimit() yields 630, its largest allowed D-value.  
GetExcelAppVer () Specifies the current version of Excel used    
 For Excel97: =GetExcelAppVer() yields 8,  9 for 2000,  10 for 2002,  11 for 2003,  
 12 for 2007,  and 14 for 2010.   

 

GetxBase () Specifies the current packet size    
 For XN.xla605 the function =GetxBase() yields the value 7.   
GetXnArgSep () Specifies the current VBA argument separator 
 In the US, =GetXnArgSep() should yield a comma.   
GetXnCaseSen () Specifies the current case sensitivity 
 If case-insensitive (the default), =GetXnCaseSen() yields FALSE; if case-sensitive, TRUE.   
GetXnConfigStatus ()   Specifies the current configuration settings 
 Needs a 19 rows high, 2 columns wide array to list the names and values of all 19 configuration settings.   
GetXnDecSep () Specifies the current VBA decimal separator 
 In the US, =GetXnDecSep() should yield a period.   
GetXnDefaultDigits()   Specifies the currently selected default D-value 
 For the examples in this table, =GetXnDefaultDigits() should yield 35.   
GetXnDefCStr () Specifies the current default value for default Dbl2Str digits 
 =GetXnDefCStr() yields 0 for vCStr, 15 to 28 for dCStr, 29 to Digits_Limit for xCStr.   
GetXnSMPAdj () Specifies the Digit Max Adjustment of the Simulated Machine Precision 
 For 7-digit packets, the recommended value is 2 × 7 = 14 decimals.   
GetXnAddAdj () Specifies the current Digit Max Adjustment for xAdd 
 The recommended value is 0 decimals for all versions of XN.   
GetXnDivAdj () Specifies the current Digit Max Adjustment for xDiv 
 The recommended value is 0 decimals for all versions of XN.   
GetXnMultAdj () Specifies the current Digit Max Adjustment for xMult 
 The recommended value is 2 packets for all versions of XN.   

D.11  The Math Parser and related functions     
The Math Parser can evaluate many formulas f written in quasi-algebra, as a function  of the specified parameter Values. It  
thereby brings an aspect of symbolic calculus to numerical computation. Its formulas resemble those in Excel’s VBA, as a 
function of the parameter Values. The Math Parser performs two functions: it first “parses” the formula, then evaluates its 
value. Its extended precision implementations xEval and xEvall, as implemented by John Beyers, uses the original parser  
developed for double precision expressions, but with XN for value evaluation. This can be especially helpful because writing  
complicated mathematical expressions in XN can be error-prone, a complication readily  avoided by using xEval or xEvall.  
The Help-on-Line entry xEval (see the XN Toolbar under Help) gives many clear examples. xEvall uses a sophisticated  
search for the value labels which makes it about ten times slower than xEval; its use is therefore not recommended.   
xEval(f, Values, [,D] [,Angle] [,Tiny] [,IntSwapFix])    Evaluates quasi-algebraic formulas 
xEvall(f, Values, [,D] [,Angle] [,Tiny] [,IntSwapFix])    xEval using top labels if present 
 xEval assigns the parameter values in the order in which they are listed under Values.  
 D = 0 will use the faster double-precision mode; D = -1 specifies quadruple precision 
 in the Variant Decimal mode. Leaving D unspecified will use the value of Default  
 Digits specified in the XN Toolbar under X-Edit  Configuration. 
 

 Angle provides a choice between the default rad(ians), deg(ree), and grad(s). Tiny  
 defines the minimum absolute value that will be considered to be different from zero;   
 for the optional IntSwapFix see the Help-on-Line file.   

 The formula f and its values can be fully specified in the argument, as in  
 xEval("1/x^2+5*x*y+7*sqr(y)",{"2","3"},28) = 42.37435565298214105469212439,  
 or the formula and/or its parameter values can be read from specified spreadsheet  
 cells, as in =xEval("1/x^2+5*x*y+7*sqr(y)",I2:I3,28) or =xEval(I4,{"2","3"},28 or  
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 =xEval(B4,B2:B3,28), which all give the same result when cell B4 contains the for- 
 mula 1/x^2+5*x*y +7*sqr(y), and cells B2 and B3 the values 2 and 3 respectively..  

 For further details about the Math Parser see section 8.16 and, especially, the Help- 
 on-Line entry on xEval. As described there, several functions can also use its quasi- 
 algebraic code, such as the integration functions Integr(), Integr_2D, etc.  
 Here are two extended precision functions that use the Math Parser: xGrad and xJacobi.  

xGrad (Values, f [,x] [,D] [,Labels])    Gradient of a multivariate function f                 
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 Approximates the gradient of a single function f of several variables, by default called  
 x, y, z, and t in this order, as evaluated at the parameter Values in that same order, using 
 5-point expressions for the derivative. If you want to use other variable name Labels in  
 your function, specify them as Labels and count your commas, see below.  
 You can specify the Values and the formula for f directly into the expression, as in 
 =xGrad({-1,2,3,7},("(x+2*y-3*z^2)/LN(t)")), or read them from the spreadsheet, as  
 in =xGrad(B2:B5,B6), when B2:B5 contain the values –1, 2, 3, and 7 respectively, 
 and cell B6 the formula (x+2*y-3z^2)/ln(t).  

 In both cases you will get  
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  Also in both cases, the expression must be written in Math Parser format. The Values, 
 either enumerated or taken from B2:B5, must be in the order x,y,z,t. If you use other  
 names, e.g., a, b, c, and d, then these must be defined in Labels as  
 =xGrad(B2:B55,B6,,,A2:A5) where A2:A5 contains a, b, c, and d respectively.  

xJacobian (Values, f, [,x] [,D] [,Labels] [,MaxPrec])   Jacobian of f    
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 Approximates the Jacobian of a vector f of n functions f , each of m variables, by default  
 called x, y, z, and t in this order, as evaluated at the parameter Values listed in that same  
 order, using 5-point expressions for the derivative. If you want to use other variable name  
 Labels in your function, specify them as Labels and keep track of the commas.  
 As with xGrad you can specify the Values and the formula for f directly into the expression 
 or, as is usually more convenient, read them from the spreadsheet, as in =xGrad(B2:B4,B5:B7), 
 where B2:B5 contain the specific Values at which the function formulas (in Math Parser format) 
 in B5:B7 must be evaluated:  
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Subject index 
Courier font identifies VBA instructons.  
Numbers refer to pages; italic numbers indicate 
the starting page of section(s) primarily devoted 
to that topic. Excel functions are shown in caps, 
VBA. Matrix  & XN functions in lower case.  

A  
absolute addressing  2 
accumulation errors  533 
accuracy  47, 56, 342 
    algorithmic  47 
    vs. precision  viii, 55, 213 
acid-base titrations  38, 152, 200 
    of acid salt  158 
    of diprotic base  200  
acknowledgements  xi 
ActiveCell 349 
activity corrections  154 
additive color scheme  23 
address window  1 
adjustable parameters: how many?  104 
algorithmic accuracy  47, 529  
aliasing  224 
aligning a chart to the cell grid  17, 378 
AllAddIns folder  5 
Analysis Toolpak  4 
anova  4 
apodizing  232 
Application. 34, 39, 50, 360 
aqueous solution equilibria  147 
argument  35 
arithmetic progression  ix, 2, 13 
ARPREC  544 
array  5, 54, 415 
    vs. matrix  460 
    vs. range  viii, 345 
Arrhenius  
    equation  312 
    plot  87 
arsenic in tuna fish  214 
ASINH 345 
assignment symbol  337 
assume non-negative in Solver 140 
asterisk  2 
asymptotic expansion  45 
ATAN vs. atn  49 
auditing tools  51, 528 
augmented matrix  467 
autocatalytic reactions  323 
automatic scaling in Solver  140 
average of repeat data  14, 56 

 

B 
backup files  11 
bacterial growth  202 
band map  26 
bat echolocation  298 
best fit  120 
BigMatrix.xla  8, 545 
    add-in macros  545 
    installation  6, 8 
    Manager  546 
big-O notation  412 
binomial coefficient  44 
bit  343 
black body radiation  140 
boiling point of water  84, 133 
buffer strength  147, 150 
buffer value  150 

C 
calibration curve  77 
calling a macro  396 
cancellation errors  529 
caret  2 
case sensitivity  3 
cell comment  3, 51, 52, 368 
cell drag & drop  11 
cell handle  2, 14 
cement hardening  118 
centering  70, 90 
    multivariate  474 
    polynomial  476 
centered, weighted least squares  86, 127 
central differencing  402 
    multipoint  404 
    of higher-order derivatives  412 
    tables  403, 410, 412, 418 
chaos  331 
chart vs. plot  viii, 13 
checking  
    array dimensions  343 
    for data overwrite  376 
chemiluminescence decay  160 
chevron  4 
chi-square distribution  73 
chlorophyll spectrum  1675  
circular reference  51 
van Cittert deconvolution  281 
Clausius-Clapeyron equation  84 
close button  1 
CM (covariance matrix)  68, 77, 104 
COBE (COsmic Background Explorer)  140 
code debugging  390 
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Cole plot 189 
collinearity  84 
ColorIndex 358 
coloring  358 
color maps  22 
color palette  358 
ColumnSolver  186 
comma-delimited  33 
comments through N function  3 
comparison operators  549 
compatibility issues of Excel 2007  547 
Compatibility Pack for Office XP/Office 2003  13  
compiled code 398 
complex matrix operators   
    in double precision  455, 489, 495, 506, 587 
    in extended numberlength  456, 621 
complex numbers 42, 453 
compression of data by FT  244 
conditional statements  346 
condition number  498, 626 
Confidence  57, 73 
confidence interval  57 
confidence limit  57 
Const statement  345 
constrained nonlinear least squares  169 
continuously stirred reactor  323 
contour map  24 
control loops  348 
control variable  57 
convolution  259 
    by FT  259 
    defined mathematically  262 
    of a simulated fluorescence decay  265 
    of Gaussian peaks  266, 271, 291 
    symbol ⊗  ix 
    theorem in FT  270 
convoluting integers  122 
Convolve macro  262 
ConvolveFT  271 
copying  2 
    files and graphs  32 
    to the Clipboard  7 
copyright credits  xii 
correlation between what and what?  71  
correlation coefficients  70, 90  
cosmic microwave background  140 
covariance  68 
covariance matrix  68, 77, 104 
cowboy hat  21 
CP29 spectrum  168 
cubic spline  444, 469 
CurrentRegion 351 
custom function or subroutine  35, 308, 335 

 
 

D 
Data Analysis Toolpak  4 
data array  43 
data compression  
    by FT  244 
    of fluorescence spectra 246 
data input  348 
    with input boxes  352 
data  
    output  353 
    overwrite, check for  376 
    reduction  55  
    sampler  4 
    transformation  126 
    types  344 
    validation  51 
Davies equation  155 
debugging  
    commands  390 
    tools  391 
    toolbar  392 
Debug.Print  337, 391 
Debye- Hückel formula  155 
Decimal (quadruple precision) mode  544 
    XN.xla quadruple precision functions  545 
decomposition vs.   
    deconvolution  266 
deconstruction an address  361 
deconvolution  259 
    by FT  273 
    by parameterization  291  
    Grinvald-Steinberg  289 
    symbol ∅  ix 
    vs. decomposition  266 
    van Cittert  281 
    with Solver  289 
dedication  vi 
Def statements  345 
default  1 
default settings  10 
define chart format  11 
define name dialog box  3 
Deleted Esophageal Cancer  33 
dependent variable  57 
Deriv1  421 
differentiation  
    by differencing  401 
    by FT  237 
    by polynomial fitting  123 
    of experimental data  425 
dimensioning  335, 343 
Do … Loop  46, 347 
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exponentiation vs. negation 49 double precision 

    Matrix.la add-in matrix functions 582 
    XN.xla(m) add-in functions & macros  538 
drag & drop  11 
driver macro  374 
dynamic named range  3 

E 
echolocation pulse  298 
economic optimization routines  607 
edit in cell  11 
editing tools in VBA  386 
eigenvalue decomposition  495 
eigenvalue & eigenvector operations  603 
electrical circuit analysis routine  607 
ELS  123 
embedding in Word  32 
engineering functions  587 
entering data  33 
enzyme kinetics  130, 178 
equation parser  365 
equidistant data, least squares of  122 
equivalence volume  159 
ERF 536 
ERFC 45 
error  55 
error bars  15 
error function  536 
error function complement (erfc)  45 
error messages  35, 588 
error propagation  66 
error recovery  389 
error surface  vii, 84, 183 
error trapping  388 
ethanol analysis 
    by gas chromatography  110 
    by Raman spectrometry  113 
Euler-Maclaurin error estimates  427, 431, 435 
Euler’s integration method 
    explicit  301 
    implicit  307 
    semi-implicit  306 
Euler’s rule  217 
even function  218 
Excel 2007  
    inserting a toolbar  12   
    transitioning to 12 
Excel vs. VBA  49 
explicit (Option Explicit)  46, 335 
explicit Euler integration  301 
exponential decay  128 
exponential error function complement  45 
exponentiation  2 

extended numberlength 544, 545, 547, 615   
extrapolation  75, 180 
extreme parameter values  315 

F 
factorials  10, 36, 45 
false minima  181 
figurate numbers  481 
Filip.dat  480, 505, 578 
fill a row or column  2 
filtering  230, 259  
    in FT  230 
    time-dependent  259 
FINV 73, 106 
Fisher function  73, 106 
fitting data 
    piecewise  177 
    through fixed points  169 
    lines through a common point  169 
    to a discontinuous curve  175 
    to a Lorentzian  132, 179 
    to a multicomponent spectrum  103, 165 
    to a multivariate function  99 
    to an exponential decay  128     
    to a parabola  94 
    to a polynomial  93, 104 
    to a proportionality  57 
    to a straight line  64 
    to interrelated sets of curves  173  
    to intersecting straight lines  81 
    to intersecting parabolas  97 
    to multiple peaks  162 
    to multiple curves  173 
    to parallel lines  169   
fluorescence decay  263, 289 
For Each … Next 339, 348 
formatting functions  628 
formula toolbar  1 
formula window  1 
For … Next  38, 340, 348 
ForwardFT  218 
forward slash  2 
Fourier transformation  217, 371 
    conventions used  256 
    discrete FT  255 
    2-D FFT  354  
Frobenius norm  491 
FT (de)convolution  269, 273 
F-test  4, 106 
function evaluation in XN  630 
function key 2 
functions viii, 2, 35, 37, 482, 528, 547, 599, 611 
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G 
Gabor macro  296 
Gabor transformation  295 
Galton  61 
gas-chromatographic ethanol analysis  110 
Gauss elimination  466 
Gaussian distribution  55, 73, 103  
Gaussian noise  14 
Gaussian peaks 
    convolution of  291 
    vs. Lorentzian peaks  181 
Gauss-Jordan elimination  467, 607 
general least squares fit 
    for a complex quantity  189 
    to a straight line  186 
General Public License  6 
generator tool  608 
Gibbs phenomenon  286 
global minimum  181 
global weights  126, 189 
    tables of global weights  128 
glow-in-the-dark toys  160 
GNU General Public License  6 
Goal Seek  213 
good graphing practices  18 
good spreadsheet practices  50, 525 
GoTo 348 
GradeBySf macro  119 
gradient of multivariate function  631 
Gram polynomials  107, 111, 122 
Gram-Schmidt orthogonalization  108 
Gran plot  40 
graph  
    guidelines for good graphs  18 
    inserts  18 
    specifications  378 
    2-D  13 
    3-D 19 
gridline control  11 
Grinvald-Steinberg deconvolution  289 
guidelines for good graphs  18 

H 
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	Appendix C
	Entering the functions listed below does not require the use of Ctrl(Shift(Enter.
	Entering the following functions requires the use of Ctrl(Shift(Enter
	VectAngle(v1,v2)Angle between two vectors
	Diagonal or tridiagonal square matrices occur quite frequently in practical problems. When such matrices are of high orders, they can take up a large amount of space, even though most of it will be occupied by zeros. It is then often convenient to store
	The Matrix Toolbar provides access to a set of matrix-related macros through three menu headings: Selector, Generator, and Macros. Below we will briefly describe each one of these.
	The Selector tool can be used to select different parts of a matrix. Start with identifying a matrix (when that matrix is bordered by empty cells, just clicking on a single cell of that matrix will do), and then use the choices presented in the Selecto
	Selector choiceBrief description
	Fullthe entire matrix
	Diag. 2ndthe anti-diagonal, running from top-right to bottom-left
	Tridiag. 1stthe tridiagonal, from top-left to bottom-right
	Tridiag. 2ndthe anti-tridiagonal, from top-right to bottom-left
	Subtriang. lowthe lower triangle minus the diagonal
	Subtriang. upthe upper triangle minus the diagonal
	Adjointthe matrix minus the row and column of the chosen cell
	Table C.10.1: The choices offered in the Selector dialog box.
	As its default, the Selector dialog box will copy the selected matrix parts as is, at your option leaving the unselected cells empty or filling them with zeros. By using its Target range you can also choose different output formats, such as vertical, hor
	The Generator tool allows you to create matrices to your specifications. Apart from its four generators of specific matrices (Hilbert, inverse Hilbert, Tartaglia, and Toeplitz) of user-selectable order, it contains four random matrix generators, which 
	Generator choiceBrief description
	Randomgenerates random matrices of user-selected dimensions, minimum and maximum element values, format (full, triangular, tridiagonal, integer, symmetric), and numerical resolution.
	Hilbert inverse generates the inverse Hilbert matrix of given order.
	Tartagliagenerates the Tartaglia matrix of given order.
	Toeplitzgenerates the Toeplitz matrix of given order.
	Sparsegenerates sparse square matrices of user-selected order, minimum and maximum element values,
	dominance factor, filling factor, and spreading factor. One can specify integer and/or symmetrical
	output, and regular (square) or sparse output display. In the latter case, all non-zero elements mij
	are listed in three adjacent columns as i, j, and mij.
	Table C.10.2: The choices offered in the Generator dialog box.
	The Macros tool provides easy access to a number of macros. Many of these macros duplicate matrix functions already described in appendices B.2 to B.8, but the sparse matrix operations contains some additional features. The choices given in the Macros di
	Macro choiceBrief description
	Matrix operationsreproduces the most often used matrix functions
	Gauss step-by-step a macro form of GJ_Step
	Graphincludes Shortest Path and Draw
	MethodsClean-up and Round
	Table C.10.3: The choices offered in the Macros dialog box.
	AE3 Appendix D corrected.pdf
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