
5.10 Analysis of the tides (AE3 pp. 246-253) 
So far in this chapter we have seen that Fourier transformation can be competitive with least squares 

analysis in, say, differentiation and integration. Below we will give an extensive analysis of a particular 
data set to illustrate how we can often combine Fourier transformation and least squares analysis for effi-
cient data fitting of periodic phenomena. Each method has its own strengths and weaknesses: Fourier 
transformation can show us many simultaneous frequency components, but has limited frequency resolu-
tion, which may lead to leakage. Least squares fitting is more flexible in what it can fit, but needs more 
extensive guidance. Because the two methods often complement each other, their combined use can make 
a very powerful data analysis tool. 

The tides have been understood quantitatively through the work of such scientific giants as Newton, 
Euler, Daniel Bernoulli, Laplace, and Kelvin as due to the combined effects of lunar and solar attraction. 
What we experience as tides is the differential effect of the attractive forces on the solid earth and those 
on the more mobile surface water, modulated by the shape (size and depth profile) of the particular body 
of water and by the cohesive forces that produce drag to water movement, and further modified by wind, 
barometric pressure, and local currents (as where rivers meet oceans). We need not look here into its de-
tailed mathematical description, but merely consider the tidal record as a signal that should have as its 
principal frequency components the lunar and solar periods, and take it from there. Fortunately, tidal re-
cords are readily available on the web from NOAA, and we will use one such record. You are of course 
welcome to select a record from another location, and/or pick a different time period. Since arbitrarily 
chosen data sets seldom contain precisely 2n data points, we will deliberately take a record that does not 
fit that restriction, and then select a subset of it whenever we need to use Fourier transformation.  

Exercise 5.10: 

(1) Go to the website co-ops.nos.noaa.gov/, and under Observations select Verified/Historical Water Level Data: U.S. 
and Global Coastal Stations. 

(2) Select a station; in the example given below we have used 8410140 Eastport, Passamaquoddy Bay, ME, but you can 
of course pick another. 

(3) Specify a time interval (we have used W2, hourly heights), a Begin Data (here: 20010601 for 2001, June 1) and an 
End Data (here: 20010831, for August 31 of that same year, yielding a 2208-hour period). 

(4) Take a preview of the data in ViewPlot. 
(5) Select the data with View Data, highlight them all with Edit  Select All, and copy them to the clipboard with 

Ctrl∪c. Minimize or close the web site.   
    (6) Start Word, then click Open, Look in: Windows, select Notepad.exe, and paste the file into it with Ctrl∪v. Save 

the file as a Notepad file using any name that suits your fancy. As you will see in the next few steps, Notepad triggers 
Excel to open its Text Import Wizard, which is useful to format the data properly. 

(7) Open Excel, Select Open, then specify Files of type: as All Files (*.*) so that you will see the just-saved Notepad 
.txt file, and select it.  

(8) You will now see Step 1 of the Text Import Wizard, in which you specify that the data are of Fixed width, i.e., they 
are tab-delimited. Preview the file to see where the file header (containing all the explanatory text) ends, and then specify 
the row at which to start importing the data. (In our example, that would be at row 23.) Move to the next Step. 

(9) In the Data preview of Step 2 of the Text Import Wizard, enter lines to define the columns you want (in our exam-
ple, at lines 8, 12, 13, 15, 16, 19, 21, 27, 32, 35, and 40. You can use fewer columns, but then you will have more cleanup 
to do. Click Finish. 

(10) You will now have all the data in your spreadsheet, in columns, starting in cell A1. In the first column replace the 
station number (8410140) by a row counter: 0 in the top row, 1 in the next row, etc. Delete all peripheral columns, such 
as the one containing the year (2001), a slant (/), minutes (:00). 

(11) You can also delete the right-most columns, except the column between 35 and 40 that had been labeled Sigma, 
which you may want to save for the end of the exercise. Regardless of whether or not you save this column, first place the 
instruction =STDEV(F3:F2210) (or whatever appropriate range) at its top to compute the standard deviation of the fit  
    between the observations and the predicted data. In our example it is only 0.006 m, or 6 mm, out of an average tidal 
swing of several meters!  

(12) Insert two rows at the top, and use the higher one of these to enter the labels time, month, data, hour, and height 
(after having made sure that these labels are indeed appropriate). Also label the next two columns Hcalc and residuals. 
These labels and data will occupy columns A through G.  
(13) Plot the water heights versus time t, in hours. 
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Figure 5.10.1 illustrates the 2208 data points so imported, as a function of time. It clearly shows a peri-
odic oscillation, with a somewhat variable amplitude that is slightly more pronounced and alternating at 
its tops than at its bottom values. 

For Fourier analysis we take the last 2048 data points, thereby leaving some space near the top of the 
spreadsheet. After their Fourier transformation we calculate and plot the magnitude of the response as a 
function of frequency.  
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Fig. 5.10.1: The height of the water (as measured in meters vs. the ‘average lowest low water level’) 
at Eastport, ME, as a function of time (in hours) during the period from June 1 through Aug. 3, 2001. 

Exercise 5.10 (continued): 
(14) In row 163 (or wherever you find t = 160) copy the water level in, say, column J, and in column I enter the shifted 

time t – 160. Copy both down to the end of the data file. You should now have 2048 data in columns I and J. Highlight 
these, extend the highlighted area to include column K, and call the forward Fourier transform macro.  

(15) In column O calculate the square root of the sum of the squares of the real and imaginary components so obtained, 
and plot these versus the frequency (in column L).  

The result is illustrated in Fig. 5.10.2 at three different vertical scales. The top panel shows a large 
contribution, of value 2.991, at zero frequency. This component merely reflects the average value of the 
signal, which is measured versus a ‘average lowest low level’ in order to make most data values positive 
quantities. Indeed, by using the function =AVERAGE(range) to calculate the average we likewise obtain 
2.991. 

The largest peak at a non-zero frequency is found at f = 0.0806 h–1, a value that roughly corresponds 
with half a moon day of 24 h 50 min 28.32 s or 1/12.4206 h–1 = 0.0805114 h–1. This peak has a rather 
wide base, suggesting that it may be broadened by multiple components and/or leakage. In addition, there 
are two series of minor peaks, one at integer multiples of 0.08 h–1, i.e., at 0.16, 0.32, 0.40 and 0.48 h–1, the 
other at half-integer multiples of the same value, at 0.04, 0.12, 0.20, 0.28, 0.36, and 0.44 h–1. Neither se-
ries has quite died out at f = 0.5, and one can therefore assume that there will be higher-order terms as 
well, which can only be observed using longer data records.  

We can either fit these data on a purely empirical basis, or try to identify signals with known astro-
nomical time constants, as we did in the above paragraph. The latter approach, which introduces inde-
pendently obtainable information into the data analysis, is usually the more powerful, and will be pursued 
here. We therefore fit the data to an adjustable constant a0 plus a sine wave of adjustable amplitude a1 and 
phase shift p1 but with a fixed frequency f1 of 0.0805114 h–1, i.e., to h = a0 + a1 sin(2π f1t + p1) where t is 
time in hours, starting with 0 at the first data point. We then calculate the residuals, and Fourier-transform 
them in order to find the next-largest term(s), etc.   

Exercise 5.10 (continued): 
(16) Arrange labels and values for the adjustable parameters a0, a1, and p1, in one column, and in another (leaving at 

least one space in-between) the fixed parameter f1. Specify a0, a1, and p1 as zero, and f1 as 0.0805114.       
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(17) In column F compute the water height hcalc using the assumed parameters a0, a1, and p1, and in column G calcu-
late the difference between the measured and calculated water heights.  

(18) Also deposit a label and cell for the computation of SSR as =SUMXMY2 (E3:E2210,F3:F2210) or for whatever 
the appropriate ranges are.  

(19) Call Solver to minimize SSR by changing the values of a0, a1, and p1. 
(20) In cell R163 repeat the count of t – 160 that you already used in cell I163, and in cell S163 copy the residual from 

G163. Copy these down to row 2210. Highlight R163:T2210, apply the forward Fourier transformation, in row X calcu-
late the corresponding magnitude (i.e., the square root of the sum of squares of the real and imaginary components) of the 
Fourier transform, and plot these.  
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Fig. 5.10.2: Results of the Fourier analysis of 2048 data from Fig. 5.10.1, shown here as the magni-
tudes of the resulting frequency components, at three different vertical scales, in m. The horizontal 
scale shows the frequency, in h–1. For a more compact representation of these data see Fig. 1.3.6. 

The next most important term, clearly visible in Fig. 5.10.3, is at 0.079 h–1, and is due to the ellipticity 
of the lunar orbit, which has a period of 27.55 days. As the moon travels from its perigee (at the shortest 
moon-earth distance) to its apogee (farthest away) and back, the gravitational attraction changes, and in 
our linear analysis this translates as a difference frequency. Indeed, the corresponding first-order correc-
tion term has a frequency of  0.0805114 – 1 / (24 × 27.55) = 0.0805114 – 0.0015124 = 0.078999 h–1.   

Exercise 5.10 (continued): 
(21) Extend the parameter lists to accommodate a2, and p2 as well as f2 = 0.078999, and add a corresponding, second 

sine wave to the instructions in column F. In order to facilitate later use of SolverAid, place all adjustable coefficients 
(i.e., the amplitudes and phase shifts) in a single, contiguous column, one below the other.  

(22) Rerun Solver, now simultaneously adjusting the five coefficients a0, a1, p1, a2, and p2.  
(23) Rerun the Fourier transform of the residuals, and look at the updated plot of these residuals. 
(24) The next-highest peak in the residual plot is at 0.083 h–1, close to the frequency of 2/24 = 0.083333 h–1 associated 

with half the solar day.  
(25) After you include this frequency and repeat the protocol sketched in points (18) through (20) you will find that 

there is yet another frequency near 0.08 h–1, viz. at about 0.082 h–1, which can be identified with the sum frequency 
0.0805114 + 1 / (24 × 27.55) = 0.0805114 + 0.0015124 = 0.082024 h–1.  

(26) Also incorporate this frequency, call Solver to adjust the nine resulting coefficients a0 through a4 and p1 through 
p4, Fourier-transform the residuals, and plot them.  
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Fig. 5.10.3: The magnitudes of the residual frequency components, after account-
ing for the average and the leading sinusoidal component at f1 = 0.0805114 h–1.  

(27) Extend the parameter lists to accommodate four new frequencies, amplitudes, and phase angles, and include them 
in the instruction for the calculated heights in column F.  

(28) Set the frequencies at f1/2, f2/2, f3/2, and f4/2, and subsequently let Solver adjust the amplitudes a0 through a8 and 
p1 through p8.  

(29) After you have done this, run SolverAid (which requires that a0 through a8 and p1 through p8 form one contigu-
ous column) to calculate the standard deviations of the coefficients.  

Fig. 5.10.4: The magnitudes of the residual frequency components, after 

accounting for the average and four sinusoidal component near 0.08 h–1.  
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The resulting Fig. 5.10.4 shows that we finally have accounted for the four major frequency compo-
nents near 0.08 h–1. Even though the Fourier analysis showed only one peak around 0.08 h–1, we used as-
tronomical information to resolve this into four different signals, exploiting least squares analysis to find 
their amplitudes and phase angles. The combination of different methods is often more powerful than 
each method by itself.  

The next-largest contributions are around 0.04 h–1. We therefore extend the analysis with four more 
frequencies, each one-half of the corresponding values near 0.08 h–1, and subsequently use Solver to ad-
just the coefficients, which now number 17. As can be seen in Fig. 5.10.5, with the four frequencies we 
have found so far we can indeed represent the general envelope of the tidal curve, but not its alternating 
amplitudes or other details.  

Table 10.5.1 lists the results so obtained for the (absolute values of the) various amplitudes; the phase 
angles are needed for the analysis but have no physical meaning because they are tied to the particular 
starting time chosen. We see that we can represent most of the signal in terms of predictable periodic 
functions, so that tide tables can indeed anticipate the tides. Such tables are, of course, based on much 
longer data sets (so as to include the length of the moon’s node, a period of about 18.6 years) and on us-
ing more frequencies.  
 frequency    amplitude frequency   amplitude  
  0 2.993 ± 0.004   standard deviation of the fit:  0.19 
  0.03950 0.023 ± 0.006 0.078999 0.568 ± 0.006 
  0.040256 0.034 ± 0.006 0.080511 2.620 ± 0.006 
  0.041012 0.006 ± 0.006 0.082024 0.215 ± 0.006 
  0.041667 0.158 ± 0.006 0.083333 0.286 ± 0.006 

Table 5.10.1: The amplitudes found, with their standard deviations 
as provided by SolverAid, for the nine frequencies considered so far.  
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Fig. 5.10.5: The tides recalculated using the four principal frequency components near 0.08 h–1. Comparison 
with Fig. 5.10.1 shows that this indeed represents the dominant longer-term features of the experimental data. 

 

We see that only one of the four half-frequency components is important, and that (using three times 
the standard deviation as our criterion) one of them is not even statistically significant. However, the Fou-
rier transform shows that not all frequency components around 0.04 h–1 have been accounted for, since 
there is a remaining signal at about 0.0386 h–1, which we can tentatively associate with the difference fre-
quency 0.0805114 / 2 – 0.0015128 = 0.038743 h–1. Indeed, if we replace the non-significant frequency 
0.041012 by 0.038743, run Solver again, and then Fourier-transform the residuals, we find that that all 
remaining components have amplitudes smaller than 0.03 m, see Fig. 5.10.6.   

  By comparing the data in Tables 5.10.1 and 5.10.2 we see that changing one frequency can alter the 
amplitudes of the neighboring frequencies, and we therefore look into the mutual dependence of these re-
sults. SolverAid can provide the corresponding array of linear correlation coefficients, in this case an ar-
ray of 17 by 17 = 289 numbers. Below we show how we can quickly screen them for significant correla-
tions. 
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Fig. 5.10.6: The magnitudes of the residual frequency components, after ac-
counting for the average and eight sinusoidal components near 0.08 and 0.04 h–1.  

 frequency   amplitude  frequency  amplitude  
   0 2.994 ± 0.004                standard deviation of the fit:  0.17 

   0.03950 0.007 ± 0.005 0.078999 0.568 ± 0.005 
   0.040256 0.020 ± 0.005 0.080511 2.620 ± 0.005 
   0.038743 0.114 ± 0.005 0.082024 0.216 ± 0.005 
   0.041667 0.156 ± 0.005 0.083333 0.286 ± 0.005 
 

Table 5.10.2: The same results after one frequency near 0.04 h–1 has been redefined.  
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Fig. 5.10.7: The original data (solid points) and the fitted curve (drawn line) 
based on the average and eight sinusoidal components near 0.08 and 0.04 h–1. 

Exercise 5.10 (continued): 
(30) Run SolverAid (again) and let it provide the matrix of linear correlation coefficients. Say that you have placed it in 

AA1:AQ17. Deposit in cell AS1 the instruction =IF(ABS(AA1)>0.9,ABS(AA1)," "), and copy this instruction to 
the entire block AS1:BI17. Any linear correlation coefficient with an absolute value larger than 0.9 will show, whereas 
all other cells will remain empty because they will contain the ‘empty’ string between the two quotation marks in the IF 
statement. You can of course set the bar lower, at 0.8 or wherever, since in this particular case none of the 17 adjusted pa-
rameters has a very pronounced dependence on any other. In fact, the largest linear correlation coefficients (apart from 
the 1’s on the main diagonal) are smaller than 0.2!  

(31) To get an idea of how well you can represent the observed tidal data with just eight frequencies, plot the original 
and calculated curves in one graph, using different symbols and/or colors, as in Fig. 5.10.7. If you want to see how far 
you still would have to go, plot the residuals, as in Fig. 5.10.8. And if you want to see what is possible by harmonic 
analysis (using a longer database and many more harmonic terms), plot the data in the ‘Sigma‘ column you may have set 
aside under point (11). This plot is shown in Fig. 5.10.9, and indicates that there is very little ‘noise’ on this signal. Such 
‘noise’ may still be deterministic, when caused by, e.g., effects of earthquakes or storms, but could only be recognized as 
such in retrospect, by comparison with geological and meteorological records, and certainly would not be predictable.  

It is clear that we can continue this process and, by including more and more frequencies, make the fit 
better and better. This is indeed how tidal tables are made. Remember that the standard deviation between 
the observed and the predicted heights listed in the NOS-NOAA table was a mere 6 mm, see under step 
(11) in the exercise. The corresponding value for our fit so far is 174 mm, more than 30 times larger. Still, 
you get the idea; in this case, with a large signal and apparently relatively little ‘noise’ from earthquakes, 
storms etc., the prediction can be extremely reliable, and the more so the longer the experimental record 
on which it is based.  
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Fig. 5.10.8: The residuals after accounting for the average 
and eight sinusoidal components near 0.08 and 0.04 h–1. 
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Fig. 5.10.9: The residuals in the NOS/NOAA harmonic analy-
sis same data set. Note the ten times enlarged vertical scale.  

6.7  Iterative deconvolution using Solver (AE3 pp. 289-291) 
The van Cittert deconvolution method is general but quite sensitive to noise. An alternative approach 

was introduced by Grinvald & Steinberg in Anal. Biochem. 59 (1974) 583. It uses reverse engineering 
based on an assumed analytical (and therefore noise-free) function for the undistorted model signal sm = 
f(ai) in terms of one or more model parameters ai. We convolve the model signal sm based on guessed pa-
rameters ai with the experimental transfer function t to obtain rm = sm ⊗ t. We then use Solver to adjust the 
ai by minimizing the sum of squares of the residuals between rm and the experimental (or, in our example, 
simulated) rexp. The requirement that sm be describable as an explicit analytical function is somewhat re-
strictive but, when applicable, can greatly reduce noise. 

Because macros do not self-update, Solver cannot respond automatically to the effect of parameter 
changes that involve macros. This means that, for a non-manual program, we can either rewrite Solver so 
that it can accommodate macros, or (much simpler) perform the convolution using a function rather than a 
macro. The latter approach is illustrated in exercise 6.7.1.   

Exercise 6.7.1: 
(1) Our example will be modeled after exercise 6.2.2 and fig. 6.2.3, i.e., based on a single exponential decay. In cells 

A1:D1 deposit the column labels #, s, t, and r for the rank number # (which can represent time, wavelength, etc), original 
(undistorted) signal s, filter or transfer function t, and result r.  

(2) In A3 place the value –100, in A4 the instruction =A3+1, and copy this down to cell A303.  
(3) In B103 insert the instruction =$D$97*EXP(-$D$98*A103) for the transfer function t, and copy this down to row 

303. In cell D97 enter an amplitude value (such as 1) and in cell D98 a value for a rate constant (e.g., 0.03), with accom-
panying labels in column C. 

(4) For the transfer function t, in cell C103 place the instruction =EXP(-1*(LN(1+(A103-$D$100)/$D$101))^2) 
and copy this down to row 303.  

(5) Highlight A103:C303 and call the macro Convolve, which will write the convolution r in D103:D303. 
(6) Deposit Gaussian (‘normal’) noise (with mean 0 and standard deviation 1) in N103:O303, and supply corresponding 

scale values, such as 0.01 in cell N100 and 0.02 in cell O100.  
(7) In cell E103 place the instruction =C103+$N$100*N103 to simulate a noisy transfer function texp, in cell F103 

use =D103+$O$100*O103 for a noisy response signal rexp, and copy both instructions down to row 303. In row 1 place 
appropriate labels. You now have a set of simulated, noisy data to try the deconvolution. In a real application these simu-
lated values should of course to be replaced by experimental data, as anticipated by their labels.  

(8) In G103 place a model function, such as =$I$97*EXP(-$I$98*A103). Copy it down to row 303, and label it in 
G1 as s model. Place a guess value for the amplitude in I97, and an initial estimate for the rate constant in I98, with ac-
companying labels in column H. Do not place any numbers or text in G3:G102, but instead fill it with, e.g., yellow, to 
remind yourself to keep it clear. 

(9) In cell H103 deposit the function =Convol(G103:G202,$E$103: $E$202,100) and copy it all the way to row 
303. In cell H1 label the column as r model.  

(10) Go to the VBA module and enter the following code for this function: 
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Function Convol(Array1, Array2, N) 

Dim i As Integer 
Dim Sum1 As Double, Sum2 As Double 
Dim Array3 As Variant 
ReDim Array3(1 To 2 * N) 

Sum2 = 0 
For i = 1 To N 
  Sum2 = Sum2 + Array2(i) 
Next i 

For i = 1 To N 
  Array3(i) = Array2(N + 1 - i) 
Next i 

Sum1 = 0 
For i = 1 To N 
  Sum1 = Sum1 + Array1(i - N + 1) * Array3(i) 
Next i 

Convol = Sum1 / Sum2 

End Function 

(11) In cell I100 deposit the function =SUMXMY2(F103:F303,H103:H303) and place a corresponding label such as 
SSR= in H100. 

(12) Call Solver, and Set Target Cell to I100, Equal to Min, By Changing Cells I97:I98. Then engage SolverAid to find 
the corresponding uncertainties.  

(13) Compare your results with those in fig. 6.7.1 which shows them before and after using Solver. 
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Fig. 6.7.1: The assumed signal s (gray band), the noisy transfer function texp (line with small solid points), the re-
sult rexp obtained by convolving s with the (noise-free) transfer function and then adding noise (large open cir-
cles), the assumed model function sm (line) and the resulting function rm after convolving sm with texp (heavy line). 
The top panel shows the situation just before calling Solver, the bottom panel that after Solver has been used.  

This exercise demonstrates the principle of the method. We started with amplitude a = 1 and rate con-
stant k = 0.03, used as initial guess values am = 1.5 and km = 0.02, and then found am = 1.005 ± 0.009 and 
km = 0.0300 ± 0.0004, with a standard deviation sy = 0.020 of the fit in r.  
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In practice, try to keep the convolving custom function as simple as possible, and especially avoid IF 
statements which tend to slow it down. We have used a barebones custom function Convol() to keep it 
simple, even though it is wasteful of spreadsheet real estate.  

When the data involve a shift in time, try to adjust its initial estimate by trial and error in the graph, us-
ing a critical region (such as where the response takes off) where it makes a significant difference, be-
cause the least squares criterion is often not very sensitive to horizontal shifts, but looks at vertical differ-
ences, and averages over the entire curve.  

6.8  Deconvolution by parameterization (AE3 pp. 291-295) 
Many approaches to deconvolution are quite sensitive to noise, and may therefore require filtering, 

which (when not carefully compensated in the deconvolution routine) can again lead to distortion and loss 
of detail. The method described in section 6.7 avoids this problem by fitting the experimental data to a 
noise-free analytical function. Below we will carry this approach to its logical conclusion by using a 
noise-free convolution as well. Even though this approach has a somewhat limited applicability, it may 
still work when earlier-described methods fail.  

To illustrate its basic idea (Am. J. Phys. 72 (2004) 644), we will here consider only a relatively simple 
case in which a measured result r of the convolution, say, a spectrum or a chromatogram, can be de-
scribed as a sum of Gaussian curves, r = Σgr, while the transfer function t is given by a single Gaussian, t 
= gt. We have already seen in chapter 4 how we can use Solver to fit complicated functions in terms of 
sums of Gaussians, and we will now apply this to deconvolution. Again we use bold lowercase symbols 
to indicate time-dependent functions rather than constants. 

The approach we will take here substitutes deconvolving r with t by instead deconvolving Σgr with gt. 
Because gr and gt are fitted, noise-free analytical functions, this greatly reduces the effect of noise on the 
deconvolution. Noise only affects the result insofar as it limits the proper assignment of the Gaussians gr 
and gt. The actual calculation is straightforward, the most critical part of the procedure being the initial 
fitting of Gaussians to the experimental functions r and t.  

We will first deconvolve two single N-point Gaussians, gr and gt that are both functions of a common 
parameter t which can represent elution time, wavelength, wavenumber, etc. We therefore start with the 
mathematical functions 

 gr = ar exp{–½ [(t–cr)/br]2}   (6.8.1) 
and  

 gt = at exp{–½ [(t–ct)/bt]2}  (6.8.2) 
which, upon analytical Fourier transformation, yield   

 Gr = [(2π)½ ar br /N] exp [–2π j f cr] exp [–2(π br f)2]   (6.8.3) 

      = [(2π)½ ar br /N] exp [–2(π br f)2] [cos (2π f cr) – j sin (2π f cr)]  
and  

 Gt = [(2π)½ at bt /N] exp [–2π j f ct] exp [–2(π bt f)2]    

      = [(2π)½ at bt /N] exp [–2(π bt f)2] [cos (2π f ct) – j sin (2π f ctr)] (6.8.4) 
respectively, where we have used Euler’s relation e–jx = cos(x) – j sin(x). From these we obtain by division  

 Gs = Gr / Gt   (6.8.5) 
      = [ar br / at bt] exp[–2π j f (cr – ct)] exp[–2π 2 (br

2 – bt
2) f  2]  

so that the original, undistorted signal is given by 

 gs = gr ∅ gt = 222
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trtt
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where  
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 bs = (br
2 – bt

2)½  (6.8.8) 
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and  
 cs = cr – ct   (6.8.9) 
In other words, once we have characterized the two Gaussian functionss gr and gt in terms of the con-

stants ar, br, cr and at, bt, and ct respectively, we can simply calculate the deconvoluted Gaussian gs.  
Note that the constants b in eqs. (6.8.1) and (6.8.2) have the dimensions and functions of standard de-

viations. Equation (6.8.8) shows that their squares, the corresponding variances, are additive in convolu-
tion, br

2 = bt
2 + bt

2, and subtractive in deconvolution, bs
2 = br

2 – bt
2. With Gaussians, it is therefore easy to 

predict how much convolution will broaden peaks, and how much deconvolution can possibly sharpen 
them.   

Typically the experimental response r to be corrected by deconvolution is calibrated, in which case we 
will want to maintain that calibration by deconvolving with a function that has been scaled to have unit 
average. In the case of a Gaussian gt that implies that we should use 

 
π2t

t b
Na =   (6.8.10) 

so that (6.8.7) reduces to 
 as = ar br (br

2 – bt
2)–½ = ar br /bs

  (6.8.11) 
Moreover, the value of ct is usually arbitrary. If we simply set it to zero, (6.8.9) becomes 
 cs = cr   (6.8.12) 
When r must be expressed as a sum of Gaussians, r = Σgr, the same approach can be used, because 

then R = ΣGr and T = Gt so that   
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Exercise 6.8.1 illustrates this procedure for the deconvolution of the data shown in Fig. 6.2.4.   
Exercise 6.8.1: 

(1) Retrieve the spreadsheet used in exercise 6.2.3, or repeat that exercise.  
(2) In cells E20:H20 deposit column headings for texp, rexp, tmodel, rmodel, and the recovered value srecov, and in 

N20 and O20 place headings for noise n.  
(3) Generate Gaussian noise of zero mean and unit standard deviation in N22:O321. 
(4) Place appropriate noise amplitudes for t and r in cells C19 and D19 respectively, in E22:E321 compute the function 

t with added noise with, e.g., the instruction =C22+$C$19*N22 in cell E22. Similarly compute a noisy version of r in 
column F, using noise from column O. Plot these noisy versions of t and s, as in Fig. 6.8.1c.    

(5) In H2:H16 place the labels ar1=, br1=, cr1=, ar2=, br2=, cr2=, ar3=, br3=, cr3=, ar4=, br4=, cr4=, at=, bt=, and ct=. 
Alternatively you can copy them from F2:F16, then modify them.   

(6) In cell G22 deposit =$I$14*EXP(-0.5*((A22-$I$16)/$I$15)^2), and copy this instruction down to row 
321. Enter this curve in the just-made plot. 

(7) Place numerical values in I14:I16 so that the resulting curve approximately fits curve texp. (You may first want to 
color the data in G2:G16 white, so that you will not be tempted to look at the data originally taken for the simulation of s. 
When you are done fitting the data, change their color back to black or whatever.)   

(8) In cell F19 calculate SSR for t as =SUMXMY2(E22:E321,G22:G321). 
(9) Call Solver, and let it minimize SSR in F19 by adjusting the guessed parameter values in I14:I16. 
(10) Likewise, in cell H22 place the instruction =$I$2*EXP(-0.5*((A22-$I$4)/$I$3)^2)+ ... +$I$11*EXP(-

0.5*((A22-$I$13)/$I$12)^2), copy this down to row 321, and enter this curve in the graph.  
(11) Compute SSR for r as =SUMXMY2(F22:F321,H22:H321).   
(12) Use the curve made under point (9) to guess numerical values for ar1 through cr4 in I2:I13 so that the resulting 

curve approximately fits the data rexp. 
(13) Call Solver to refine these values by minimizing SSR in cell H19. Do this adjustment groupwise: first let Solver 

adjust I2:I3, then call it again to adjust I5:I7, then I2:I7, then I8:I10, I11:I13, I8:I13, and finally I2:I13. The graph might 
now resemble Fig. 6.8.1d. 

(14) In K2:K13 copy the labels as1=, bs1=, ... cs4= from F2:F13.   
(15) In L4 calculate cs1 = cr1 – ct, i.e., as =H3-$H$15.    
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(16) In L3 compute bs1 = √ ( , or =SQRT(H2^2-$H$14^2). )22
1 tr bb −

(17) In L2 calculate as1 = ar1 br1 / bs1, with =H1*H2/J2.   
(18) Copy the block L2:L4 to L5, L8, and L11.  
(19) In cell H22 compute the reconstituted signal srecov with the instruction =$L$2*EXP(-0.5*((A22-

$L$4)/$L$3)^2)+ ... +$L$11*EXP(-0.5*((A22-$L$13)/$L$12)^2), and copy this down to row 321. 
(20) Plot this curve, and compare it with Fig. 6.8.1f.  
(21) In this graph also display the function s used as the starting point of this simulation from B22:B321, a repeat from 

Fig. 6.8.1a.  

This method can indeed reconstitute most features of the original curve, at least in a favorable case 
such as shown Fig. 6.8.1f, where all peaks are Gaussian, and can be identified as such in r despite the 
noise.  

Exercise 6.8.1 (continued): 

(22) Call SolverAid, enter the Solver-determined parameters in I2:I13, the location of SSR for r (H19), and the column 
(H22:H321) in which r was calculated. Let SolverAid display the covariance matrix in N2:Y13. It will also deposit the 
standard deviations of the individual parameters in J2:J13.  

 (23) Once more call SolverAid, this time to find the uncertainty estimates for t.  Therefore enter the location (I14:I16) 
of the Solver-determined parameters, the location (F19) of SSR for t, and that (G22:G321) of the column where t was 
computed. Place the covariance matrix in Z14:AB16, so that it shares its main diagonal with that in N2:Y13.  

(24) Call Propagation, and give it I2:I16 as input parameters, N2:AB16 as covariance matrix, and L2 as function. It will 
then place the corresponding standard deviation in M2. Repeat this for the other 11 results in column L. Sorry, Propaga-
tion handles only one parameter at a time. 
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Fig. 6.8.1: Top and middle: replicas from Fig. 6.2.4, showing in panel a the original 
simulated spectrum s and the distorting transfer function t, and in panel b its convolution 
leading to the result r. Bottom panel, c: the same as in panel b after adding random noise.   

The data in Table 6.8.1 illustrate the results obtained, and allow one to consider them quantitatively, 
because the method can provide its own uncertainty estimates. These indicate the level of agreement be-
tween the parameters used to simulate s and those recovered after convolution, noise addition, and decon-
volution. For all 12 coefficients of srecov the agreement between the recovered value of s and that used in 
the simulation of Fig. 6.8.1a is within two standard deviations. Thus the original signal is retrieved within 
the uncertainty limits generated by the custom macros SolverAid and Propagation. The standard devia-
tions depend, of course, on the amount of noise added.  
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Fig. 6.8.1 (continued): The manually adjusted curves (with the parameters selected ‘by eye’) 
through the noisy data (gray curves in panel d), the same after Solver has refined the parameter 
estimates (panel e), and the resulting deconvoluted signal s (open circles in panel f). Panel f also 
displays, as a thick gray line, the original curve of the simulated function s repeated from panel a.   

  staken   rguessed rfound rst.dev.       sfound  sst.dev. 
  as1= 0.5  ar1= 0.3 0.231 0.030 as1= 0.44 0.14 
  bs1= 2  br1= 5 5.69 0.75 bs1= 3.0 1.5 
  cs1= 110 cr1= 140 144.30 0.49 cs1= 109.11 0.51 
  as2= 0.4  ar2= 0.4 0.364 0.010 as2= 0.382 0.011 
  bs2= 15  br2= 14 15.95 0.96 bs2= 15.2 1.0 
  cs2= 130 cr2= 165 166.3 1.2 cs2= 131.1 1.2 
  as3= 0.65 ar3= 0.3 0.345 0.017 as3= 0.60 0.13 
  bs3= 3  br3= 5 5.95 0.60 bs3= 3.4 1.0 
  cs3= 210 cr3= 245 245.36 0.71 cs3= 210.19 0.72 
  as4= 0.7  ar4= 0.4 0.377 0.019 as4= 0.80 0.26 
  bs4= 3  br4= 4 5.50 0.50 bs4= 2.6 1.1 
  cs4= 225 cr4= 260 260.75 0.61 cs4= 225.57 0.62 

 ttaken  tguessed tfound tst.dev.   
  at= 0.6  0.7  0.615 0.013  
  bt= 5  4.5  4.85 0.12  
  ct= 35  34  35.18 0.12  

Table 6.8.1: Some numerical results from exercise 6.8.1. The column labeled staken lists the values used for 
simulating the data in Fig. 6.8.1a. The columns rguessed and tguessed contain the initial guess values shown in 
Fig. 6.8.1c., and the next two columns the values obtained by Solver for the parameters, and those obtained 
by SolverAid for their standard deviations. Finally, the column sfound displays the deconvolved signal s as 
computed from rfound and tfound, and the column sst.dev. the corresponding uncertainty estimates. The added 
noise was Gaussian with zero mean and standard deviations of 0.04 and 0.03 for r and t respectively.  

This method works, and does not lead to oscillatory instabilities. Its applicability depends, of course, 
on how well one can represent both the measured result R and the transfer function T in terms of model 
expressions with relatively simple Fourier transforms, so that the inverse Fourier transform of their quo-
tient R/T can be expressed in analytical form. All baseline-separated peaks and peak aggregates can be 
treated individually. As a side benefit this method can furnish estimates of the standard deviations of the 
deconvolved signal s. 

 38



6.9  Time-frequency analysis (AE3 pp. 295-298) 
Fourier transformation presumes a steady state, because it considers the data set as one unit of an infi-

nitely repeating sequence of identical units. Yet, there are many phenomena with frequency content that 
are not stationary, such as speech and music. In fact, music is an interesting example because its common 
form of notation, musical script, is really a graph of frequency (the pitch of the notes to be played) as a 
function of time, complete with grid lines for both time (vertical lines identifying the various measures) 
and frequency (the horizontal lines of the staff). It even has explicit time notation (for the lengths of notes 
and rests) and the corresponding scale factors (tempo indicators and/or metronome settings). Musical 
script is, of course, a set of instructions for the performer. We here address how, other than by ear, can we 
analyze and visualize sound (or any equivalent, non-auditory signal) as a function of time and frequency.  

Time-frequency or Gabor transformation (D. Gabor, J. Inst. Elect. Engin. 93 (1946) 429) is an analysis 
in which a sliding time window moves stepwise along the data, dropping one or more points on one side, 
and gaining the same number of data points on the other. After each step, a Fourier transformation is ap-
plied. It is an inherently imprecise approach because the product of the resolutions in time and frequency 
is subject to the uncertainty relationship discussed in section 5.5. (That uncertainty is intrinsic to the prob-
lem of plotting frequency vs. time, and independent of the use of Fourier transformation or any other spe-
cific analysis method.) The uncertainty can be minimized with a Gaussian window function, which we 
therefore use. As a practical matter, we will exploit the fast Fourier transformation algorithm, and there-
fore require that the data be equidistant in time, as they usually are with sampled time-dependent signals.     

The Gabor transform macro uses a Gaussian window function of N contiguous data points (with N = 2n 
where n is a positive integer) on a data set containing M data, where M > N. It starts with the first N data 
points in the set, multiplies these by the window function, and then performs a Fourier transformation on 
that product. It then moves the window function over by one point, and repeats this process M–N+1 times 
until it has reached the end of the data set. The results are returned to the spreadsheet as a function of time 
and frequency, and can then be plotted as, e.g., a 3-D plot of the absolute magnitude of the sound as a 
function of time and frequency. Such a plot is called a sonogram. 

When the data set is so large that it would result in more than 250 columns (and therefore might ex-
ceed the 256-column width of the pre-2007 Excel spreadsheet), the macro will automatically move the 
window function each time by several data points, and the user can further restrict the size of the output 
file. If this presents a problem, modify the macro so that it stores rather than displays the data, or use rows 
instead of columns, since the spreadsheet contains many more rows than columns. In Excel 2007 and be-
yond, remove this condition from the code.   

Exercise 6.9.1:  
(1) Start a new spreadsheet. Leave the top 10 rows for graphs, and the next 4 rows for constants and column headings. 
(2) Starting in cell A15 of column A deposit time t in constant increments ∆t, such as t = 0 (1) 1000. 
(3) In column B deposit as a trial function, such as with the instruction =(SIN($B$11*A15))/(EXP(-

0.1*(A15-200))+EXP(0.003*(A15-200))) which has as frequency the value specified in B11 divided by 2π. 
Its amplitude, given by 1/{exp[–0.1(t–200)] + exp[0.003(t–200)]}, quickly rises just before t = 200,  and then slowly de-
cays, somewhat like a note played on a piano.          

(4) Plot the trial function; it should look like Fig. 6.9.1. 
(5) Call the macro Gabor, and in its successive input boxes enter the time increments (here: 1), the location of the input 

data (here: B15:B1015), and the (optional) integer to restrict the number of samples to be analyzed (which you can leave 
at its default value of 5).   

(6) The macro will now generate a data array, listing the frequency in its first column, and the rank number of the first 
data point used in each window in its top row. Inclusion of these parameters makes it easy to generate a labeled 3-D plot 
as well as a surface map.  

(7) Make a 3-D plot of the result, and also a surface map with Mapper. 
(8) Obviously, for such a simple trial function, you need not go through all this trouble. You may notice that the 3-D 

map for a sizable array is slow to rotate, and that its presence slows down the operation of the spreadsheet whenever it 
must be redrawn on the screen. 
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Fig. 6.9.1: The test function used, with the value 0.5 in cell B11. 

(9) Now add some harmonics, as in a chord. Extend the instruction in cells B15:B1015 to include three additional 
terms, identical to the first one except that their frequencies are specified by cells C11, D11, and E11 respectively.   

(10) In C11 deposit the instruction =B11*2^(3/12), in D11 the instruction =C11*2^(4/12), and in E11 the in-
struction =D11*2^(5/12), for the harmonics of a major chord, such as C-E-G-C. On the Western, ‘well-tempered’ 
musical scale, all half-notes differ in frequency by a factor of 2^(1/12).  

(11) The resulting signal is not so transparent any more, see Fig. 6.9.2. 
(12) Now repeat the process of Gabor transformation and mapping. The map should now look similar to that of Fig. 

6.9.3b.    
(13) Now the surface map reveals very clearly the four different notes, starting at the same time but at different fre-

quencies. The notes appear to start at about t = 100, whereas they really start only around t = 200. This time distortion re-
sults from the use of a Gaussian filter in the Gabor transformation macro.  

(14) Modify the instruction in cells B15:B1015 to correspond with a broken chord, in which the various notes start one 
after the other, say, at t = 200, 300, 400, and 500 respectively. Fig. 6.9.4 illustrates such a signal, and Fig. 6.9.5 its Gabor 
transform.   
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Fig. 6.9.2: The extended test function used, again with the value 0.5 in cell B11. 
 

With such complicated signals we can readily appreciate the advantages of the Gabor transform and its 
representation as a 3-D graph or surface map. The different signal frequencies, and their time courses, are 
clearly displayed. This will become even more obvious when we consider more realistic musical signals, 
which may include short (staccato) and drawn-out (legato) notes, will have harmonics (characteristic for 
the musical instrument used), and may also exhibit gradually varying frequencies, as in a glissando.  
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Fig. 6.9.3. Sonograms (i.e., surface maps of the Gabor trans-
forms) of the functions shown in (a) Fig. 6.9.1 and (b) Fig. 6.9.2.  
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Fig. 6.9.4: The extended test function for a broken major chord. 
 

The sonogram exhibits the three basic attributes of sound: time, frequency (pitch, tone-height), and 
amplitude (intensity, loudness, volume). In some respects it mimics musical notation, in that it uses the 
horizontal axis for time (indicating the duration of the various notes), while the vertical axis shows their 
pitch. In addition it displays their harmonics. In musical notation, amplitude (loudness) must be indicated 
separately, whereas the sonogram displays it as color or grayscale. We will analyze a real signal in the 
next section. 
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Fig. 6.9.5. The sonogram of the broken chord shown in Fig. 6.9.4. 
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6.10 The echolocation pulse of a bat (AE3 pp. 298-299) 
Bats orient themselves at night by sending out short sound bursts of varying amplitude and frequency, 

and by analyzing the reflected sound. The echolocation pulses are short, so that they do not overlap with 
the reflected signals. A digitized echolocation pulse of a large brown bat (Eptesicus fuscus) can be 
downloaded from http://www-dsp.rice.edu/ software/TFA/RGK/BAT/bat.html, and can also be obtained 
by e-mail from, e.g., richb@rice.edu. The recorded pulse, courtesy of Curtis Condon, Ken White, and Al 
Feng of the Beckman Center at the University of Illinois, contains 400 equidistant data points taken at 7 
µ s intervals, and therefore covers a total time of less than 3 ms duration.  

 

Exercise 6.10.1:  
(1) Start a new spreadsheet, leaving the top rows for graphs. Import the bat data, and plot them. 
(2) Apply the Gabor transform, and then map the results. The gray-scale of Fig. 6.10.1 illustrates what you might ob-

tain. More subtle details can be discerned by using a full color palette, as with Mappern for n > 0.   
  (3) The back cover of this book contains the original graph as well as the resulting sonogram, in color. The latter is also 
used on the front cover, with the time axis reversed to run from right to left.  
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Fig. 6.10.1: The top of a spreadsheet for Gabor analysis of a bat chirp. Top graph: the echolocation signal as a function 
of time, in s. Bottom graph: the corresponding sonogram: frequency (in Hz) vs. time (in start-of-sequence number). 

The signal in Fig. 6.10.1 starts out at about 30 kHz, descends to about 20 kHz, and after about 50 ms is 
joined by a second descending signal at its double frequency. The signal also contains weak higher har-
monics at the triple and quadruple frequencies. The Gabor transform and its visualization make this much 
more transparent than the original data set.  

The dominant sensory input of humans is visual. If we are trying to listen in on the meaning of whale 
songs, or on the communication between cawing crows, visualizing their sounds as Gabor plots may well 
help us to decode them.  
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7.2  The semi-implicit Euler method (for simulating the chemical 
reaction sequence A → B → C; AE3 pp. 306-308) 
 

The procedure illustrated above uses the initial concentrations to compute the behavior during the in-
terval ∆t. We do not know how those concentrations are going to change, but instead of assuming a to 
remain constant we will now approximate the change in a as linear over a sufficiently small interval ∆t. 
This leads to the semi-implicit Euler method, in which we replace, say, the concentration an during the 
interval from tn to tn+1 by its average value (an+an+1)/2 = an + (an+1–an)/2 = an + ∆a/2. Upon replac-
ing the concentrations a, b, and c in (7.1.6) through (7.1.8) by their initial values plus half their antici-
pated changes we have   
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t
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from which we obtain  

 
2/1 1

1
tk

tkaa
∆+

∆−
≈∆    (7.2.4) 

 tttt a
tk
tkaaa

2/1
2/1

1

1
∆+
∆−

≈∆+=∆+  (7.2.5) 

 
)2/1()2/1()2/1( 2

2

21

1
tk
tkb

tktk
tkab

∆+
∆

−
∆+∆+

∆
≈∆  (7.2.6) 

 bbb ttt ∆+=∆+ )2/1(
)2/1(

)2/1()2/1( 2

2

21

1
tk

btk
tktk

tka tt
∆+

∆−
+

∆+∆+
∆

≈  (7.2.7) 

We need not compute c, because it follows directly from the mass balance (7.1.17). Still, for the sake 
of completeness, we list it here as  

    (7.2.8) tkbbc ∆∆+≈∆ 2)2/(

 2  (7.2.9) /)( 2 tkbbcc tttttt ∆++≈ ∆+∆+

We see that equations such as (7.2.1), (7.2.2), and (7.2.3) cannot be used directly, but must first be 
solved for the concentration changes ∆a, ∆b, and ∆c. This accounts for the implicit in the semi-implicit 
Euler method. It is only semi-implicit because (an+an+1)/2 = an + ∆a/2 combines half of the known term 
an with half of the next unknown one, an+1. For linear systems, this is the best one can do and still retain 
an absolutely stable solution.  

Exercise 7.2.1:  
(1) Copy the spreadsheet of exercise 7.1 to a new page of the same workbook. In columns J and K of this copy, change 

the instructions to incorporate eq. (7.2.5) instead of (7.1.10), and (7.2.7) instead of (7.1.12). In column L you can either 
use (7.1.17) or (7.2.9). 

(2) Click on the curves in your equivalent of Fig. 7.1.3 to the new page, then redirect their definitions in the formula 
box to the current worksheet. In doing so, be careful not to alter the general format of the argument: (,sheetname!Xn:Xm, 
sheetname!Yn:Ym,p), where Xn:Xm and Yn:Ym specify the ranges, and p defines the relative precedence of the curves, 
with the highest number being shown on top of the other curves. All you need to change in the argument is the sheet-
name, which you find on the tab at the bottom of the spreadsheet. Incidentally, the equivalent of Fig. 7.1.2 is immaterial, 
because any differences are too small to be visible on this scale. 
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(3) The improvement in Fig. 7.2.1 over the results shown in Fig. 7.1.4 is immediate and dramatic: for the same step size 
(∆t = 0.1) the errors are now more than an order of magnitude smaller. 

(4) Repeat the analysis of the simulated data set with added Gaussian noise. For the same noisy data as used in Fig. 
7.1.3 we now find a0 = 0.9921 ± 0.0096, k1 = 0.9954 ± 0.0070, k2 = 0.496 ± 0.014, a much better over-all fit to the as-
sumed values of a0 = 1, k1 = 1, and k2 = 0.5 than obtained earlier.  

(5) As suggested by comparing Figs. 7.1.3 and 7.2.1, the improvement is more obvious for data that contain less noise. For ex-
ample, for ∆t = 0.1 and the same Gaussian noise but now with sn = 0.01 the results of the explicit and semi-implicit Euler meth-
ods would be a0 = 0.9983 ± 0.0038, k1 = 0.944 ± 0.058, k2 = 0.503 ± 0.023 and a0 = 0.9973 ± 0.0032, k1 = 0.9985 ± 0.0023, k2 
= 0.49 

Fig. 6.10.1: The top of a spreadsheet for Gabor analysis of a bat chirp. Top graph: the echolocation signal as a function 
of time, in s. Bottom graph: the corresponding sonogram: frequency (in Hz) vs. time (in start-of-sequence number). 

87 ± 0.0047 respectively. Here the explicit method clearly shows its bias. 
 

You may wonder what constitutes a fully implicit Euler method. Instead of the average value of the 
slope (as in the semi-implicit method), or its initial value (as in the explicit method), it uses the final value 
of the slope to evaluate the new value of F(t). Since that is just as asymmetrical as using the initial value, 
the implicit Euler method has an inaccuracy proportional to ∆t, i.e., comparable to that of the explicit 
Euler method, whereas the semi-implicit method has an inaccuracy ∝ (∆t)2. 

In our example, the implicit Euler method would read 
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Fig. 7.2.1: The differences between the numerically integrated and 
exact solutions for the semi-implicit Euler method with ∆t = 0.1.  

from which we would obtain  
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Upon comparing, e.g., (7.2.1) with (7.1.6) and (7.2.10), we verify that the semi-implicit method is in-
deed the average of the explicit and implicit Euler methods. It combines the absolute stability of the im-
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plicit method with an accuracy that is higher than that of either the explicit or implicit Euler method, and 
is therefore often the method of choice for solving simple problems involving ordinary differential equa-
tions.  

7.3  Using custom functions (AE3 pp. 308-311) 
As indicated in the previous paragraph, the successful fitting of simulated, noisy data can be somewhat 

misleading, since a generous amount of noise may mask many inadequacies of the model. For fitting data 
with a high signal-to-noise ratio we may therefore need to improve the algorithm, as we will do in section 
7.6. However, we can go a long way with the Euler methods by using the spreadsheet more intelligently.   

Equations (7.1.6) through (7.1.8) clearly show that the simulation is based on replacing the differential 
quotients dy/dt by difference quotients ∆y/∆t, a substitution that should become increasingly accurate as 
∆t becomes smaller. You can readily verify that the simulation errors shown in Figs. 7.1.3 and 7.2 indeed 
stem from the step size ∆t. Upon reducing ∆t by a factor of ten, the concentration differences ∆c in Fig. 
7.1.3 indeed also become smaller by an order of magnitude, and those in Fig. 7.2 by two orders of magni-
tude.  

However, in order to cover the same total time (in the above example: from t = 0 to t = 10), we would 
have to lengthen the columns ten-fold, to 1000 rows. Further reductions in ∆t would make the columns 
even longer. This will quickly lead to impracticably long columns. Moreover, it may be undesirable to 
lengthen the columns, e.g., because we may only have experimental data at given intervals ∆t. Below we 
will indicate how we can improve the accuracy of our simulation without increasing the column length.  

Exercise 7.3.1:  
(1) Return to the spreadsheet of exercise 7.2.1, and set the values in K1:K3 back to the corresponding values in B1:B3. 
(2) For the concentration a an elegant solution exists that does not require an increased column length. We saw in 

(7.2.5) that at+∆t ≈ at (1 – k1∆t/2) / (1 + k1∆t/2). Upon applying this n times with an n times smaller interval ∆t we find 
at+n∆t ≈ at {[1 – k1∆t/(2n)] / [1 – k1∆t/(2n)]}n, so that we can replace the instruction in cell J9 for a by, say, =J8*((1–
$K$1*$D$3/20)/(1+$K$1*$D$3/ 20))^10 for n = 10. Copy this down through row 108. This will improve the 
precision of the simulated a-values another two orders of magnitude without lengthening the columns. Try it. Then 
change the value of n in these instructions from 10 to, say, 1000, and observe its effect.  

Unfortunately, this trick does not work for the other concentrations, because (7.2.7) and (7.2.9) do not 
have such a simple recursivity. For those more general cases we will need to use some spreadsheet magic. 
Excel allows us to incorporate so-called user-defined or custom functions. These have much in common 
with small macros (to be discussed at length in chapter 8), except that they apply only to a numerical 
value in a single spreadsheet cell. On the other hand, custom functions update automatically, which in the 
present context is a significant advantage. Below we will use custom functions to compute the concentra-
tions a, b, and c to higher accuracies by reducing the step size while keeping constant the number of 
spreadsheet cells used in the simulation. If writing computer code is new to you, you may first want to 
read sections 8.1 through 8.4 of the next chapter before continuing here. 

Exercise 7.3.1 (continued):  
(3) Return to the spreadsheet, and press Alt∪F11 (on the Mac: Opt∪F11). You will see a Microsoft Visual Basic 

screen appear, with its own menu bar. On that bar, select Insert  Module if the display does not show a white writing 
area to the right of the Project column; otherwise, if a page already exists, just move to the end of any text on it. Then en-
ter (type, or copy from SampleMacros) the following instructions:  

Function siEulerA(k1, oldT1, oldT2, n, oldA) As Double 

'semi-implicit Euler method for A 

Dim i As Integer 
Dim A As Double, f As Double, step As Double 

n = CInt(n) 
A = oldA 
step = (oldT2 - oldT1) / n 
f = (1 - k1 * step / 2) / (1 + k1 * step / 2) 

For i = 1 To n 
  A = A * f 
Next i 

siEulerA = A 

End Function 
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(4) A short explanation is in order. The top line specifies the name by which we can call this function, the parameters it 
will use (in exactly the same order as used here in the function argument, i.e., within the brackets following the function             
name), and (optionally) its precision, starting with an apostrophe. The next line contains a comment that will be ignored 
by the spreadsheet but reminds the user of the purpose of the function; the last line identifies its end.  

(5) The next two lines of code (i.e., not counting empty lines inserted for better readability) define the types of con-
stants used in the function; do not specify the dimensions of parameters (such as k1, oldT1, etc.) that are imported 
through the function argument. In general these lines are optional though very useful; they are mandatory if you use Op-
tion Explicit, an option that, when used, is listed at the very top of your module, and then applies to all procedures in that 
module.    

(6) The fifth line (optional as well) makes sure that the method will work even if a non-integer value for n is used by 
mistake, by converting it to an integer n with the instruction CInt (for convert to integer). This line will be executed 
from right to left, i.e., the computer takes the value of n, converts it to an integer (if it isn’t already one), and then assigns 
that value to the variable to the left of the equal sign. We insert this line here merely to illustrate how you can make a 
function somewhat less error-prone by anticipating possible mistakes. This does not imply that the function is now im-
mune to entry errors: using zero for n would certainly trip up the function when it tries to divide by 0 in the next line of 
code, and using a negative number, or a letter, would also give problems.  

 

(7) Line 6 sets the concentration parameter A equal to the value of oldA imported through the function argument. The 
calculation starts in earnest on line 8 by defining the new step size, step. By letting oldT1 and oldT2 refer to relative 
addresses of cells containing t in successive rows of the spreadsheet, the time intervals in the spreadsheet need not be 
equidistant. Alternatively we can make the step size constant throughout the calculation by referring to absolute addresses 
for oldT1 and oldT2 respectively. 

(8) Lines 9 through 11 contain the action part of the function, by n times repeating the computation of A for a time in-
terval step that is n times smaller than the data spacing oldT2 – oldT1.  

(9) Again, the equal sign here functions as an assignment. In other words, the line A = A * f should be read as if it 
were written as A ⇐ A * f, i.e., as “replace A by A * f.” 

(10) We calculate the value of f separately on line 8, rather than use, e.g., A= A*(1-k1*step/2)/(1+k1*step/2) 
directly in line 10, because line 8 is executed only once, whereas in line 10 the same calculation would be repeated n 
times. It is in such loops that we should be most careful to avoid busywork, because it can noticeably slow down the 
computation. Note that the line specifying f must follow the definition of step, because it uses its value which, other-
wise, would not be defined. 

(11) Finally, the output of the function is defined in its penultimate line. Incidentally, you will have noticed that a num-
ber of words you have entered (Function, As Double, Dim, As Integer, etc.) are displayed in blue after you have entered 
the line on which they appear. These are terms the VB Editor recognizes as instruction keywords, and seeing them in 
color therefore assures you that your instructions are being read.  

(12) Now enter the corresponding instructions for siEulerB, or copy the instructions for siEulerA and then correct and 
amend that copy. For your convenience, the changes between the two sets of instructions are shown below in boldface.  

Function siEulerB(k1, k2, oldT1, oldT2, n, oldA, oldB) As Double 

'semi-implicit Euler method for B 

Dim A As Double, B As Double, e 
 

step As Doubl
Dim f As Double, fA As Double, fB As Double 
Dim i As Integer 

n = CInt(n) 
A = oldA 
B = oldB 
step = (oldT2 - oldT1) / n 
f = (1 - k1 * step / 2) / (1 + k1 * step / 2) 
fA = k1 * step / ((1 + k1 * step / 2) * (1 + k2 * step / 2)) 
fB = (1 - k2 * step / 2) / (1 + k2 * step / 2) 

For i = 1 To n 
  B = A * fA + B * fB 
  A = A * f 
Next i 

siEulerB = B 

End Function 

(13) Note the use of a space followed by an underscore at the end of line 1, in order to indicate a line continuation. This 
allows us to break up a long instruction so that it will be visible on the monitor screen (or the printed page) while being 
interpreted by the computer as a single line. There can be no text on that line beyond the continuation sign.  

(14) In order to use the functions you have just entered, exit the editor with Alt∪F11 (Mac: Opt∪F11), which toggles 
you back to the spreadsheet. On the spreadsheet, in cell F2 place the label n=, and in G2 its value, which should be a 
positive integer larger than 0.  
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(15) Replace the instruction in J9 by siEulerA($K$1,$A8,$A9,$G$2, J8), copy this instruction down to row 
108. Likewise replace the instruction in K9 by siEulerB($K$1,$K$2,$A8,$A9,$G$2,J8,K8), and see what hap-
pens with the concentration differences in columns N through P.   

(16) Convert the instructions in columns N through P to the corresponding logarithms, so that you need not change the 
scale of the graph every time you change the value of n.   

(17) Run the spreadsheet with ∆t = 0.1 and various values for n, such as 1, 10, and 100. With n = 100, the plot of the 
concentration errors should look like Fig. 7.3.1. By using one-hundred times smaller steps, the error in the semi-implicit 
Euler method has been reduced ten-thousand-fold. 

(18) Try ∆t = 0.1 with n = 1000. Depending on the speed of your computer, the computation may now take its sweet 
time (after all, in each of the 100 cells you make the For … Next loop do 1000 complete calculations), but you get re-
warded with absolute errors that are all smaller than 5×10–10! That will be good enough for almost any experiment.  

(19) Reset the values in K1:K3 to new guess values, and rerun Solver and SolverAid. For almost any realistic noise the 
accuracy of your results will now be limited by that noise, rather than by inadequacies in the model. And that is precisely 
where you want to be: the computation should not add any inaccuracies to your experimental results. 

(20) Go back to exercise 7.1.1 and write the corresponding functions eEulerA and eEulerB for the explicit case. 
Then try them out, see how they run. For the same ∆t = 0.1, what value of n do you need in order to get the errors down 
to the same order of magnitude as those shown in Fig. 7.3.1? 

(21) Save the spreadsheet for further use in section 7.6. 
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Fig. 7.3.1: The differences between the numerically integrated and exact solutions for the 
semi-implicit Euler method with ∆t = 0.1 and n = 100 for an actual step size of 0.001.  

7.4  The shelf life of medicinal solutions (AE3 pp. 311-314) 
The rate of decomposition of pharmaceutical solutions depends on the kinetics involved, which are 

characterized by reaction order, rate constant, and activation energy. This typically requires multiple rate 
measurements at different temperatures, which can then be combined to compute the activation energy. 
Industrially, this approach is often considered too time-consuming, especially since only a value for the 
shelf life is needed. A popular shortcut is therefore to use a single, nonisothermal data analysis, intro-
duced to pharmacology by A. R. Rogers in J. Pharm. Pharmacol. 15 Suppl. (1963) 101T. Rogers used an 
inverse-logarithmic temperature profile that made the analysis mathematically tractable; others have used 
a reciprocal or linear temperature profile, and methods based on numerical differentiation or numerical 
integration have also been used. Here we will use a combination of numerical integration and nonlinear 
least squares fitting to illustrate its versatility as a generally applicable tool for any temperature profile.  

As our specific example we will consider the alkaline degradation of riboflavin, also known as vitamin 
B2, as reported by B. W. Madsen, R. A. Anderson, D. Herbison-Evans and W. Sneddon in J. Pharmac. 
Sci. 63 (1974) 777. They listed experimental results for a 10–4 M solution of riboflavin in 0.1 M aqueous 
NaOH, on which they took temperature readings and reaction samples while the temperature was gradu-
ally raised. The samples were quenched in acetic acid to halt the reaction, and assayed spectrometrically. 
The reported temperature readings are shown in Fig. 7.4.1, and are listed in A16:B28 of Fig. 7.4.3). They 
can be represented by the quadratic relation T – 273.15 = (20.92 ± 0.27) + (0.4456 ± 0.0098) t – 
(0.000503 ± 0.000073) t2, where T is the absolute temperature in oK, and t is time in minutes.    

We assume first-order kinetics, as common for decomposition reactions of a dilute (10–4 M) species in 
a large excess (0.1 M) of reactant. We will approximate the continuously increasing temperature t as a se-
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ries of sufficiently short isothermal steps of length ∆t, each at a slightly higher temperature ∆T than its 
predecessor. Using the semi-implicit Euler method we then have, see (7.1.2), (7.2.1) and (7.2.5), 
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where c is the riboflavin concentration at the start of an isothermal time interval ∆t with rate constant k, 
and ∆c is the (negative) riboflavin concentration change during that period ∆t. For the dependence of the 
rate constant on temperature we will assume the Arrhenius equation 
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Fig. 7.4.1: The relationship between temperature and time reported by 
Madsen et al. (open circles) and a quadratic curve (drawn) fitting these data. 
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where k′ is a constant, and E is the activation energy of the reaction; the gas constant R has the value 
1.9858775 × 10–3 kcal mol–1 K–1. Madsen et al. used 20 oC = 293.15 oK as their reference temperature, and 
we will do likewise. Rewriting (7.4.2) for k = k20 at T = 293.15 and combining this with (7.4.2) to elimi-
nate k′ yields 
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Because Madsen et al. specified their times to the nearest 0.5 min, we write a custom function TStep 
to subdivide each time interval between successive data points into sub-intervals of 0.5, 0.05, or 0.005 
min respectively, and use the earlier-established cubic relation between temperature and time to establish 
the corresponding temperatures during those sub-intervals. The rate constants at each of these sub-
intervals then follow from (7.4.3), and the riboflavin concentrations c are computed from (7.4.1). TStep 
will then display that riboflavin concentration c at the end of each interval. Since the intervals between 
data points contain varying numbers of sub-intervals, a Do … Loop Until is used.     

Function TStep (StepSize, Time1, Time2, c1, k20, E) 
 

' StepSize = length of sub-intervals 
' Time1 = time at start of interval 
' Time2 = time at end of interval 
' k20 = rate constant at 20 C 
' E = activation energy, in kcal/mol 
' R = 0.0019858775 is the gas constant, in kcal/(mol*K) 
' c = concentration 
' c1 = ealier-found concentration at start of interval 
' c2 = computed concentration at end of interval 
 

' NOTE: Before using this function, make sure that the 
' correct equation is used for Temp as a function of Time, 
' and that the reference temperature is correct as well 
 

Dim c As Double, Temp As Double, Time As Double 
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c = c1 
Time = Time1 + StepSize 

Do 
  Temp = 273.15 + 20.92789 + 0.4455754 * Time - 0.0005030758 * Time ^ 2 
  k = k20 * Exp((E / 0.0019858775) * (1 / 293.15 - 1 / Temp)) 
  c = c * (1 - k * StepSize / 2) / (1 + k * StepSize / 2) 
  Time = Time + StepSize 
Loop Until Time > Time2 + 0.001 
TStep = c 
 

End Function 

Figure 7.4.2 compares the observed dependence of the riboflavin concentration on time (open circles) 
with that using a rather crude guess value (gray line) and with the (visually indistinguishable) fits (thin 
black line) obtained with the three different step sizes. As Table 7.4.1 shows, the results obtained for the 
three step sizes are quite similar, and in this case are optimal for a step size of 0.05 min (3 sec). While 
TStep updates within the blink of an eye, repeating it inside the iterative Solver routine will quite noticea-
bly slow Solver at the 0.005 min step size.  

The entire spreadsheet, after use of Solver and SolverAid, is shown in Fig. 7.4.3. The strong collinear-
ity between E and k20 (see cells D10 and E9) is not surprising for this type of exponential expressions, see 
section 4.21. The corresponding error surface is displayed in Fig. 7.4.4.      

 guess value step = 0.5 min step = 0.05 min step = 0.005 min 

 Ainit 0.6 0.6404 ± 0.0013 0.6404 ± 0.0013 0.6404 ± 0.0013   
 E 22 20.31 ± 0.23 20.29 ± 0.23 20.28 ± 0.23 kcal mol–1  
 k20 0.00015 0.000315 ± 0.000013 0.000319 ± 0.000013 0.000319 ± 0.000013 min–1  
 SSR 0.02434765 0.00006423 0.00006422 0.00006422   
 sf   0.00253 0.00253 0.00253 

Table 7.4.1: The results obtained with different step sizes. In this case, a step size of 0.05 min suffices. 
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Fig. 7.4.2: The experimental data of Madsen et al. (open circles), a crude fit to them (broad gray 
line) with assumed values for cinit, E, and kinit, and the fit obtained by Solver (thin black line).  
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Fig. 7.4.4: The error surface of this problem 

A B C D E F
1    Analysis of data from B.W.Madsen et al., J. Pharmac. Sci. 63  (1974)  777-781.

2 A init  = 0.640385207 0.001279146

3 E  = 20.28332305 0.225764006 kcal mol-1

4 k 20 = 0.000319187 1.33015E-05  min-1

5 CM: 1.63621E-06 -0.000178882 1.14645E-08
6 -0.000178882 0.050969387 -2.96704E-06
7 1.14645E-08 -2.96704E-06 1.76929E-10
8 CC: 1 -0.619428593 0.673809115
9 -0.619428593 1 -0.988029796

10 0.673809115 -0.988029796 1
11 SSR = 7.9969E-05 0.002534388
12
13 t T -273.15 T k A exp A calc

14 min oC oK  min-1

15
16 0 21.0 294.15 3.593E-04 0.640 0.640
17 10 25.7 298.85 6.204E-04 0.637 0.637
18 20 29.4 302.55 9.423E-04 0.633 0.632
19 30 33.4 306.55 1.464E-03 0.622 0.625
20 40 37.7 310.85 2.321E-03 0.618 0.613
21 51.5 43.0 316.15 4.026E-03 0.589 0.591
22 60 46.0 319.15 5.454E-03 0.568 0.568
23 70 49.2 322.35 7.494E-03 0.534 0.532
24 80 53.5 326.65 1.137E-02 0.488 0.484
25 90 57.0 330.15 1.584E-02 0.423 0.423
26 100 61.0 334.15 2.294E-02 0.351 0.350
27 120 66.6 339.75 3.797E-02 0.191 0.191
28 130 70.5 343.65 5.341E-02 0.124 0.120
29 140 0.065
30 150 0.030
31 160 cell: instruction:   copied to: 0.011
32 170 0.003
33 180 D11 = SUMXMY2(F16:F28,E16:E28) 0.001
34 190 F16 = D2 0.000
35 200 F17 = TStep2(0.05,A16,A17,F16,$D$4,$D$3)       F18:F35 0.000

 

Fig 7.4.3: The spreadsheet after using Solver and SolverAid. The extension of t beyond 130 min and the corresponding 
extension of Acalc is so that Figs. 7.4.2 can show the entire theoretical curve; cells C13:D28 are not strictly needed either. 

 

7.7  The XN 4th order Runge-Kutta function AE3 pp. 320-322) 
XN contains several ODE-solving functions that are all listed in the Paste Function box once XN is in-

stalled. Here we will merely illustrate one of them, ODE_RK4, which makes it very simple to use the 4th 
order Runge-Kutta method. In exercise 7.7.1 we will use the simple differential expression dy/dx = –2xy, 
with the known solution y = e–x2, and in exercise 7.7.2 we will apply the same method to the sequential 
chemical reactions A → B → C, which also has known, algebraic solutions, see (7.1.15) though (7.1.17).   
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Exercise 7.7.1: 
(1) On a new spreadsheet deposit the quasi-algebraic expression y′=-2*x*y in cell C3, and in cell E3 put a value for 

the step size, say 0.1. 
(2) In B4 place the label x, and in C4 the label y. These labels are needed so that the function can relate the variables in 

C3 with their numerical values, which must be listed immediately below their labels.   
(3) In B5 write the initial value of x, and in C5 that of y. We will here use x0 = 0 so that y0 = 1. 
(4) Highlight cells B6:C6, type in the function description, =ODE_RK4($C$3,B5:C5,$E$3), and deposit this in-

struction with Ctrl∪Shift∪Enter.  
(5) Now comes a neat trick: again highlight B6:C6, grab its handle (at the lower-right corner of cell C6), pull it down to 

row 35, and release. You will now have the 4th-order Runge-Kutta approximation of the differential equation in cell C4, 
computed from x = 0 to x = 3 at intervals of 0.1.  

(6) In cell D4 place a label for yref, and in D5 the instruction =EXP(-1*B5^2). Copy this instruction down to row 35.  
(7) In cell E4 put a label for pE, in cell E6 the instruction ='IF(D6=E6," ! ",-LOG(ABS((D6-E6)/E6)), and 

pull this also down to row 35.  

While the absolute error ε = C35–D35 at x = 3 is only about 10–6, the value in C35 is still almost 1% 
off from its correct value of yref in D35. Can we do better with a smaller step size? Answer that question 
for yourself, using steps of 0.01 and 0.001 respectively. Reaching x = 3 from x = 0 with smaller steps im-
plies longer columns, but the results (as summarized in the right bottom of Fig. 7.7.1) speak for them-
selves. As expected for a 4th order method, a tenfold reduction in step size leads to a decrease in the rela-
tive error of the order of 104. Again, we can avoid the longer columns with a function that, in turn, exer-
cises the function ODE_RK4 with n times smaller increments, but displays its results only after n such 
steps.   

For the sequence of chemical reactions A → B → C with concentrations a, b, and c, we have the dif-
ferential equations (7.1.2) through (7.1.4) with the initial conditions (7.1.5). Exercise 7.7.2 illustrates how 
we might approach this problem with the XN function ODE_RK4.  

Exercise 7.7.2: 
(1) On a new spreadsheet put symbols for elapsed time t, and for the concentrations a, b, and c in, say, B4:E4. Immedi-

ately below them place their initial conditions, for which we will here use those of section 7.1, i.e., t0 = 0, a0 = 1, b0 = 0, 
and c0 = 0.  

(2) Above the labels for a, b, and c place the differential equations governing their behaviors, in quasi-algebraic form, 
i.e., a′ = – a, b′ = a – b/2, and c′ = b/2, see (7.1.2) through (7.1.4) with k1 = 1 and k2 = 0.5.   

(3) Place the value of the step size somewhere, say, 0.1 in cell E2.  
(4) Highlight B6:E6, type the instruction =ODE_RK4($C$3:$E$3,B5:E5,$E$2)., and deposit it with the array in-

struction Ctrl∪Shift∪Enter.  
(5) In B5 write the initial value of x, and in C5 that of y. We will here use x0 = 0 so that y0 = 1. 
(6) Grab the handle of this array, and pull it down to, say, row 105.  
(7) Highlight the block B5:E105, and plot it as an XY graph.  
(8) Note how quick and easy ODE_RK4 makes it to solve a set of coupled differential equations.  
(9) Highlight B105:E105, grab its handle, and pull it all the way down to row 1005. For longer times t, the concentra-

tions a and b become quite negligible vs. c., which means that the simulated reaction completely ran its course.  
(10) Change the value of the step size in E2 to, say, 0.01. The graph will show the initial tenth of the reaction in ten 

times greater detail and with systematic errors reduced by about a factor of ten thousand. Changing the step size to 1 does 
just the opposite. Try it. Simulating such solutions to coupled ODE’s can hardly be made any easier. 
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A B C D E F G H I J K L M
1
2 4th order Runge-Kutta ODE-solver:
3 ODE  = y'=-2*x*y step = 0.1 ODE = y'=-2*x*y step = 0.01 ODE = y'=-2*x*y step = 0.001
4 x y y ref pE x y y ref pE x y y ref pE
5 0 1 1.000000 0 1 1.000000 0 1 1.000000
6 0.1 0.990050 0.990050 9.38 0.01 0.999900 0.999900  ! 0.001 0.999999 0.999999  ! 
7 0.2 0.960789 0.960789 8.39 0.02 0.999600 0.999600  ! 0.002 0.999996 0.999996  ! 
8 0.3 0.913931 0.913931 7.91 0.03 0.999100 0.999100  ! 0.003 0.999991 0.999991  ! 
9 0.4 0.852144 0.852144 7.71 0.04 0.998401 0.998401  ! 0.004 0.999984 0.999984  ! 

10 0.5 0.778801 0.778801 8.49 0.05 0.997503 0.997503 15.18 0.005 0.999975 0.999975  ! 
11 0.6 0.697676 0.697676 7.06 0.06 0.996406 0.996406 14.95 0.006 0.999964 0.999964  ! 
12 0.7 0.612627 0.612626 6.45 0.07 0.995112 0.995112 14.75 0.007 0.999951 0.999951  ! 
13 0.8 0.527293 0.527292 6.02 0.08 0.993620 0.993620 14.57 0.008 0.999936 0.999936  ! 
14 0.9 0.444859 0.444858 5.66 0.09 0.991933 0.991933 14.42 0.009 0.999919 0.999919  ! 
15 1.0 0.367881 0.367879 5.35 0.10 0.990050 0.990050 14.29 0.010 0.999900 0.999900  ! 
16 1.1 0.298200 0.298197 5.08 0.11 0.987973 0.987973 14.18 0.011 0.999879 0.999879  ! 
17 1.2 0.236931 0.236928 4.84 0.12 0.985703 0.985703 14.09 0.012 0.999856 0.999856  ! 
18 1.3 0.184524 0.184520 4.62 0.13 0.983242 0.983242 14.00 0.013 0.999831 0.999831  ! 
19 1.4 0.140864 0.140858 4.41 0.14 0.980591 0.980591 13.92 0.014 0.999804 0.999804  ! 
20 1.5 0.105406 0.105399 4.22 0.15 0.977751 0.977751 13.87 0.015 0.999775 0.999775  ! 
21 1.6 0.077312 0.077305 4.04 0.16 0.974725 0.974725 13.82 0.016 0.999744 0.999744  ! 
22 1.7 0.055584 0.055576 3.88 0.17 0.971514 0.971514 13.78 0.017 0.999711 0.999711  ! 
23 1.8 0.039171 0.039164 3.72 0.18 0.968119 0.968119 13.76 0.018 0.999676 0.999676  ! 
24 1.9 0.027059 0.027052 3.57 0.19 0.964544 0.964544 13.77 0.019 0.999639 0.999639  ! 
25 2.0 0.018322 0.018316 3.43 0.20 0.960789 0.960789 13.80 0.020 0.999600 0.999600  ! 
26 2.1 0.012161 0.012155 3.29 0.21 0.956858 0.956858 13.87 0.021 0.999559 0.999559  ! 
27 2.2 0.007912 0.007907 3.17 0.22 0.952753 0.952753 14.06 0.022 0.999516 0.999516  ! 
28 2.3 0.005046 0.005042 3.04 0.23 0.948475 0.948475 14.76 0.023 0.999471 0.999471  ! 
29 2.4 0.003155 0.003151 2.93 0.24 0.944027 0.944027 14.08 0.024 0.999424 0.999424  ! 
30 2.5 0.001933 0.001930 2.81 0.25 0.939413 0.939413 13.66 0.025 0.999375 0.999375  ! 
31 2.6 0.001162 0.001159 2.70 0.26 0.934634 0.934634 13.40 0.026 0.999324 0.999324  ! 
32 2.7 0.000684 0.000682 2.60 0.27 0.929694 0.929694 13.20 0.027 0.999271 0.999271  ! 
33 2.8 0.000395 0.000394 2.50 0.28 0.924595 0.924595 13.03 0.028 0.999216 0.999216  ! 
34 2.9 0.000224 0.000223 2.40 0.29 0.919339 0.919339 12.89 0.029 0.999159 0.999159  ! 
35 3.0 0.000124 0.000123 2.30 0.30 0.913931 0.913931 12.76 0.030 0.999100 0.999100  ! 

row: instruction: pulled down to row: h: pE for x = 3:
B6:C6 = ODE_RK4($C$3,B5:C5,$E$3) 35 0.1 2.30
F6:G6 = ODE_RK4($G$3,F5:G5,$I$3) 305 0.01 6.47
J6:K6 = ODE_RK4($K$3,J5:K5,$M$3) 3005 0.001 10.50

copied to row:
D5 = EXP(-1*B5^2) 35
E6 = IF(C6=D6," ! ",-LOG(ABS((C6-D6)/D6)) 35
H5 = EXP(-1*F5^2) 305
I6 = IF(G6=H6," ! ",-LOG(ABS((G6-H6)/H6)) 305

L5 = EXP(-1*J5^2) 3005
M6 = IF(K6=L6," ! ",-LOG(ABS((K6-L6)/L6)) 3005

 
Fig. 7.7.1: The top part of the spreadsheet of exercise 7.7.1 for the 
Runge-Kutta analysis of dy/dx  = –2xy using the XN function ODE_RK4.   
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A B C D E
1
2 A to B to C step = 0.1
3 ODE = a'=-a b'=a-b/2 c'=b/2
4 t a b c
5 InitVal = 0 1 0 0
6 0.1 0.904838 0.092784 0.002379
7 0.2 0.818731 0.172213 0.009056
8 0.3 0.740818 0.239779 0.019402
9 0.4 0.67032 0.296821 0.032859

10 0.5 0.606531 0.34454 0.048929
11 0.6 0.548812 0.384013 0.067175
12 0.7 0.496586 0.416205 0.087209
13 0.8 0.449329 0.441982 0.108689
14 0.9 0.40657 0.462116 0.131314
15 1.0 0.36788 0.477302 0.154818
16 1.1 0.332871 0.488157 0.178972
17 1.2 0.301195 0.495234 0.203571
18 1.3 0.272532 0.499027 0.228441
19 1.4 0.246597 0.499976 0.253427
20 1.5 0.22313 0.498472 0.278397
21 1.6 0.201897 0.494864 0.303239
22 1.7 0.182684 0.489462 0.327854
23 1.8 0.165299 0.482541 0.35216
24 1.9 0.149569 0.474344 0.376087
25 2.0 0.135336 0.465088 0.399577

cells: instruction:
B6:E6 = ODE_RK4($C$3:$E$3,B5:E5,$E$

 
Fig. 7.7.2: The top of the spreadsheet simulating the chemi-
cal reaction A → B → C with the NX instruction ODE_RK4. 
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Fig. 7.7.3: The concentrations a, b, and c of the reacting chemical spe-
cies A → B → C as a function of time t, as simulated with ODE_RK4. 
As in Fig. 7.6.1, the concentration errors are all smaller than ± 10–6.  
 

8.6  Ranges & arrays (AE3 pp. 345-346) 
A typical stand-alone computer language uses arrays, i.e., collections of data ordered by indices, and 

VBA is no exception. Each element of an array is defined by its indices, which typically start counting 
from 1 or 0. Such array indices are purely a matter internal to the array, regardless of the origin of the in-
formation stored in it. Moreover, each array element contains only one item of information: a number, a 
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text string, a date, etc. A VBA array must have at least two elements: vA(1 To 1) is not acceptable. 
Depending on its dimensionality, an array can use one or more indices to define its elements: vA(1 To 
7), vB(1 To 7, 1 To 3), vC(1 To 7, 1 To 3, 1 To 15), etc. Note that the number of 
array elements of multi-dimensional arrays can be quite large: as just defined, vC would have 7 × 3 × 15 
= 315 elements.  

The integration of a computer language with a spreadsheet requires another structure, which is where 
ranges come in. VBA uses ranges to specify individual cells, cell blocks, or a collection of cells and/or 
cell blocks on the spreadsheet, including their locations and their contents. And those contents can have 
many aspects: each spreadsheet cell may not only specify, say, a formula, a resulting value, and an ad-
dress, but also type font, color, and all kinds of other formatting properties.  

A range contains its spreadsheet address(es), and therefore doesn’t lose its connection with the spread-
sheet. This allows the user to go back and forth between the spreadsheet and a VBA calculation. But be-
cause a range must hold so much information, much of it often peripheral to the computation, it is slow 
and tedious to use a range in complicated calculations. On the other hand, VBA arrays are strictly local to 
VBA, and are independent (and ignorant) of the location of the corresponding input information on the 
spreadsheet. In all but the simplest cases we will therefore read and write with ranges, then transfer the 
necessary information to arrays, and operate within VBA with those arrays. Finally, at the end of the cal-
culation, we read the array(s) back into a range in order to make the result appear on the spreadsheet.  

Other differences: a range can be defined by an explicit spreadsheet address or, as we have already 
seen, by the convenient Selection, in which case VBA associates the range address with that of the 
highlighted region. A range can refer to a single spreadsheet cell, as it did in the subroutines Read() of 
section 8.1. A range can be moved around on the spreadsheet with an instruction such as 
rgName.Offset(3,-1).Select which moves the range rgName 3 rows down and one column to the 
left. A range can also be resized with rgName.Resize(5,4).Select, in which its top left corner stays, 
but its number of rows and columns can either increase or decrease to 5 rows and 4 columns. Combining 
the offset and resize instructions allows complete freedom to move a range. No information is lost upon 
offsetting and/or resizing a range, see the MoveAndResizeARange MacroMorsel.  

Because a range is tied to the spreadsheet, it is strictly one- or two-dimensional: one-dimensional for a 
single cell, row, or column, two-dimensional for any other collection of input cells. Excel does not sup-
port three- or higher-dimensional ranges.    

An array can contain only one type of data, with a minimum of two elements. An array has an internal 
numbering system that starts with either index 1 or 0 (when Option Base 0 is used), and can have up to 60 
dimensions. Because of the ambiguity of the base option used, it is best always to specify where you start 
and stop counting in an array. 

For an array to be compatible with a range, that array must use two indices specifying (in this order) 
rows and columns. If the array contains only one row or one column, it must specify the other index as 1 
in order to be compatible with a range.  

As already mentioned, you can redimension an array, but all previous information in the array is lost, 
except when you enlarge the array with the combination ReDim Preserve, in which case you can add 
extra columns but no additional rows. This is because the array is actually stored as a linear sequence, 
first the first row, then the second, and so on. The data in the new columns can therefore simply be added 
at the end of this linear sequence.  

In summary: ranges are tied to the Excel spreadsheet, while arrays exist only in either the spreadsheet, 
or VBA. For maximum efficiency, use a range to read information from the spreadsheet, extract the 
needed information into one or more specific arrays, use these arrays to manipulate the data in VBA, then 
write the results back into a range, and in that form return the results to the spreadsheet. In order to facili-
tate the translations from range to array and back, the array must be two-dimensional, even if it only 
represents data in a single row or column, in which case the unused dimension should be specified as 1 to 
1. Conversion from spreadsheet array to VBA array via the corresponding range can often be achieved 
conveniently with an instruction such as dataArray = Selection.Value that extracts an array of 
values from Selection, the range highlighting the spreadsheet array. Conversely, writing the results 
back can often be done simply with Selection.Value = dataArray. We will revisit this matter 
in sections 8.9 and 8.10. 
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8.15.1  Invasive sampling (AE3 pp. 363-364) 
It is sometimes convenient to change a parameter on the spreadsheet, and to exploit the consequences 

of that change. As our example, we will use this here to find the first derivative of a function F(a) by 
changing a. The simplest approach is to read a range, change the contents of one of its cells, write that 
back onto the spreadsheet, and then read the resulting change(s) in other cells. In this manner we can, e.g., 
read values of a function F(x) by changing x, without the need to code that function explicitly in the sub-
routine. Below we will illustrate this in order to compute the derivative of a function. Excel has two spe-
cific text functions that can be helpful in this respect: SUBSTITUTE and REPLACE.  

The basis of numerical differentiation is that Excel can evaluate a function of one or more variables, 
and that, in order to find its (partial) derivative, we merely need to change one such variable by a known, 
relatively small amount ∆a (i.e., a small fraction of the variable value a) and observe the resulting change 
∆F in the function. After all, the derivative dF/da of a function F with respect to a (or, when F depends 
on more than one parameter, its partial derivative ∂F/∂a) is defined as 
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which, for ∆a « a, can be approximated by 
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By letting the spreadsheet evaluate F(a+∆a) and F(a), we can find the value of dF/da of any function 
that Excel can compute. For a more detailed treatment see section 9.2.  

In order to use (8.15.1) in a macro, place a in one spreadsheet cell, and in another cell deposit a for-
mula for F that depends on a (and possibly on other factors, in which case we will compute the partial de-
rivative). Note that we will only find the numerical value of the derivative of the function, at its current 
value, not a generally applicable formula.  

For starters, just to illustrate how this macro works, try a = 3 with F = 4 + 5 a2 = 49, for which Fderiv 
should be 5 × 2 a = 30, or with F = 7 – 6 ln(a) = 0.408326268, which should yield Fderiv = – 6 / a = –2. Then 
change the value of a and/or the formula for F to suit your own fancy.  
Sub NumericalDifferentiation() 
 

Dim A As Double, Amin As Double, Aplus As Double 
Dim F As Double, Fmin As Double, Fplus As Double 
Dim Fderiv As Double 
Dim rgA As Range, rgF As Range 
 
 

' Read the values of A and F 
 

Set rgF = Application.InputBox(Prompt:= _ 
  "The function is located in ", Type:=8) 
rgF.Select 
F = rgF.Value 
 

Set rgA = Application.InputBox(Prompt:= _ 
  "The variable a is located in ", Type:=8) 
rgA.Select 
A = rgA.Value 
 

' Modify A to Aplus and read the corresponding Fplus 
 

Aplus = A * (1 + 1 / 1048576) 
Selection.Value = Aplus 
rgF.Select 
Fplus = rgF.Value 
 

' Modify A to Aminus and read the corresponding Fminus 
 

Aminus = A * (1 - 1 / 1048576) 
rgA.Select 
Selection.Value = Aminus 
rgF.Select 
Fminus = rgF.Value 
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' Clean up by restoring the initial value of A 
 

rgA.Select 
Selection.Value = A 
 

' Compute and display the derivative 
 

Fderiv = (Fplus - Fminus) / (A / 524288) 
MsgBox "The first derivative of the function is " & Fderiv 
 

End Sub 

The above works when we change values, but is slightly more complicated when the cells to be in-
vaded contain formulas but display their values, as in Figs. 2.14.1 and 2.14.2. To cover both values and 
formulas, we start the macro by copying their formulas, then temporarily replace these by their numerical 
values with an in-place Copy PasteSpecial as Values, operate on the resulting values, and finally restore 
the original formulas. This also works for numbers because asking the formula of a cell containing a 
number yields that number. For details, see how this approach is implemented in the custom macro 
Propagation. Since Solver only yields numbers, it is not necessary for SolverAid.  

8.16 Using the XN equation parser (AE3 pp. 365-368) 
Invasive sampling works in general, because anything that can be computed on the spread-

sheet can be read. But because it requires time-consuming switching between spreadsheet and 
VBA, using ranges loaded with excess information, it is often an impractical choice. A much 
faster, though somewhat less general approach illustrated in section 8.15.2 is analogous to what 
was described in section 8.14 as deconstructing an address, viz. deconstructing an equation, then 
reassembling it in VBA. This is precisely what the XN equation parser does: it relieves you of 
the need to enter this code yourself. The parser takes an equation written in quasi-algebraic, Ex-
cel-like notation and converts it into VBA code, so that the rest of the calculation can all be done 
in VBA.  

Take, e.g., the integration of an algebraic function F(x) in the range a ≤ x ≤ b. In chapter 9 we 
will use macros such as RombergAuto to exploit the spreadsheet formula in computing the inte-
gral, but it is much faster to code the function in VBA. However, it is more user-friendly, and the 
computation is equally fast, when we write that code as an Excel-style text string that can be 
converted into VBA code. This requires a parser, which evaluates the string and reformulates it 
in VBA, as in =Integr(″1.3*exp(-x^2 /6)*sin(pi/4)/Sqr(3/x)″, 0,13). In this 
example you can see the structure of the instruction: the formula F(x) is entered in code between 
quotation marks, followed by the limits of integration, here 0 and 13. Below we list the rules 
used for writing code that the XN parser can interpret. 

(1) Numbers can be integer, decimal, or in scientific (exponential) notation: 1, 2.34, –5.6, 7.8E–9. 
(2) Complex numbers can be indicated as an ordered pair: (a,b), (1,-0.1), (-0.12345, 6.78E-19), or as a 

compound number: (a+bj), (1-0.1j), (-0.12345+6.78E-19j). For nested formulas, use a multiplier before the 
symbol j, as in ((2+3*4)+(5/6)*j. You can use either i or j. 

(3) Angles must be specified as rad, deg, or grad, where rad(pi/2) = deg(90) = grad(100). Angles can also 
be written in degrees, minutes and seconds, as in 20d 34m 56s, always in the Sumerian sexagesimal (base 60) 
system with 60s = 1m and 60m = 1d.    

(4) Variables can be any alphanumeric string that starts with a letter: a, x, Alpha, b1, time_2. Capitals are 
accepted but make no difference: alpha, Alpha and ALPHA are interpreted as the same quantity.  

(5) The usual algebraic expressions are accepted, such as +, -, *, /, \, ^, , as well as the logical expres-
sions <, >, =, <=, >=, <>, or, nor, nxor (for exclusive nor), not.  

(6) The mathematical constants pi (= 3.1416..) and e (= 2.718..) are accepted. 
(7) Most common mathematical functions are accepted, such as: exp, ln, log, sin, cos, atan, sqr, !. As in Ex-

cel, they must be followed by their argument, within parentheses. Separate multiple arguments by commas, 
as in max(a,b). The parser also accepts some multivariable arguments, as in DSNormal(x,m,s) or Hyp-
Geom(x,a,b,c) for a normal (Gaussian) distribution or a hypergeometric series respectively, and functions 
with a variable number of arguments (up to 20), as in mean(x1, x2, …).  

(8) Implicit multiplication is (with some exceptions) not acceptable: xy is read as a separate symbol name, 
not as the product of x and y, which should be formulated as x*y. Similarly, write 2*a rather than 2a.  

(9) The complete (and impressive) list of all operations and functions recognized by the parser of the cur-
rent version of XN is given in Table 17.1. For more details, see the Help file under the “Math formula string” 
heading.  
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 Function Use  Function Use 
 
 + R C M − R C M 
 ! R C M <  R C M 
 % R C M <= , =< R C M 
 * R C M <>  R C M 

/ R C M = R C M 
\ R C M >  R C M 
^ R C M | | R C M 

 
abs(x) R C M DSBinom(k, n, p, [j]) R M 
acos(x) R C M DSCauchy(x, m, s, n, [j]) R 
acosh(x) R C M DSChi(x, r, [j]) R 
acot(x) R M DSErlang(x, k, l, [j]) R 
acoth(x) R M DSGamma(x, k, l, [j]) R 
acsc(x) R M DSLevy(x, l, [j]) R 
acsch(x) R M DSLogNormal(x, m, s, [j]) R M 
AiryA(x) R DSLogistic(x, m, s, [j]) R M 
AiryB(x) R DSMaxwell(x, a, [j]) R M 
alog(z) R C M DSMises(x, k, [j]) R 
and(a,b) R C M DSNormal(x, m, s, [j]) R M 
arg(z) C DSPoisson(k, z, [j]) R 
asec(x)  R M DSRayleigh(x, s, [j]) R M 
asech(x) R M DSRice(x, v, s, [j]) R 
asin(x) R C M DSStudent(t, v, [j]) R 
asinh(x) R C M DSWeibull(x, k, l, [j]) R M 
atanh(x) R C M Ei(x) R C 
atn(x), atan(x) R C M Ein(x,n) R 
atan2(y,x) R M Elli1(f,k) R 
BesselI(x,n) R Elli2(f,k) R 
I0(x) R erf(x) R C M 
BesselJ(x,n) R erfc(x) R C M 
J0(x) R e# R C M 
BesselK(x,n) R eu# R C M 
K0(x) R exp(x) R C M 
BesselY(x,n) R exp(x) R C M 
Y0(x) R fact(x) R C M 
beta(x,y) R C M fix(x) R C M 
betaI(x,a,b) R FresnelC(x) R 
cbr(x) R M FresnelS(x) R 
Ci(x) R gamma(x) R C M 
clip(x,a,b) R M gammai(a,b) R 
comb(n,k) R C M gammaln(x) R C 
conj(x) C gcd(a,b) R 
cos(x) R C M grad(x) R M 
cosh(x) R C M hour(a) R 
cot(x) R M HypGeom(a,b,c,x) R 
coth(x) R M im(z) C 
csc(x) R M int(x) R C M 
csch(x) R M integral(f,z,a,b) C 
dateserial(a1,a2,a3) R inv(x) R C M 
day(a) R lcm(a,b) R M 

 dec(x)   R M  ln(x)  R C M 
deg(x) R M ln2# R C M 
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 Function Use  Function Use 
 

digamma(x), psi(x) R C ln10# R C M 
DSBeta(x, a, b, [j]) R log(x) R C M 
logn(a,b) R M rad(x) R M 
max(a,b,...) R C M rad5# R C M 
min(a,b,...) R C M re(z) C 
mcd(a,b,...) R C M rnd(x) R C M 
mcm(a,b,...) R C M root(x,n) R C M 
Mean(a,b,...) R M round(x,d) R M 

 

Meang(a,b,...) R M sec(x) R M 
Meanq(a,b,...) R M sech(x) R M 
minute(a) R second(a) R 
mod(a,b) R C M serie(….) C 
month(a) R sgn(x) R C M 
nand(a,b) R M Si(x) R 
neg(z) R C M sin(x) R C M 
nor(a,b) R M  sinh(x) R C M 
not(a) R C M sq(x) R C M 
nxor(a,b) R M sqr(x), sqrt(x) R C M 
or(a,b) R C M Stdev(a,b,...) R M 
perm(a,b) R M Stdevp(a,b,...) R M 
pi R C M Step(x,a) R M 
pi2 R C M sum(a1,a2,…) R M 
pi3 R C M tan(x) R C M 
pi4 R C M tanh(x) R C M 
pix2 R C M timeserial(a1,a2,a3) R 
PolyCh(x,n) R Var(a,b,...) R M 
PolyHe(x,n) R Varp(a,b,...) R M 
PolyLa(x,n) R xor(a,b) R C M 
PolyLe(x,n) R year(a) R 
r2c(a,b) C zeta(x) R C M 

 
Table 8.16.1: The functions recognized by the MathParser. R = real, C = complex, M = multiprecision. 
Functions with M can be evaluated in double or multi-precision, those with only C can be used only 
with cplxEval, and those with only R with xEval or xEvall in standard precision (with DgtMax = 0).  
  

You can use the parser in various ways, both as the explicit function Eval or implicitly, as in the 
above =Integr(″1.3*exp(-x^2/6)*sin(pi/4)/sqr(3/x)″,0,13). You can also use it in 
writing your own custom functions. For extended precision, the functions xEval or xEvall are used in-
stead. (The difference between xEval and xEvall is merely that xEvall first looks at the top of a column 
for its label, and is therefore somewhat slower.) The large range of functions and function names that the 
MathParser can handle can greatly simplify complicated calculations.  

8.22  Case study 5: modifying Mapper’s BitMap (AE3 pp. 382-386) 
Mapper provides a convenient visualization of a monotonic function z = F(x,y) of two variables, x and 

y, but there are many possible approaches as well as color schemes, and Exercise 8.22.1 will show you 
how to modify these. The examples will be for Mapper0, because we can show its gray-scale results here 
in print. The same principles apply to color images, some of which are illustrated on my Excellaneous 
website.     

Exercise 8.22.1: 
(1) On a new spreadsheet, place the number 0 in cell D20, the instruction =D20+1 in E20, and copy this to cell CZ20, 

so that you have a horizontal axis from 0 to 100. 
(2) Likewise, in cell C21 put the number 100, with the instruction =C21-1 in cell C22, and copy this down to C121 to 

make your vertical scale.  
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(3) In cell D21 deposit the instruction =D$20+$C21, and copy this instruction to the entire block D4:CZ121. We will 
use this as our test pad. 

(4) Highlight C20:CZ121, and call Mapper0, which will make a map like the one shown in Fig. 8.22.1a.  
(5) Now go to the VBEditor (e.g., with Alt∪F11), find the code section for Mapper (near the end of the MacroBundle; it 

is easiest to step through the code using PageDown and PageUp, because then the name of the routine will show in the 
top-right window above the Module), find the subroutine BitMap0, highlight that bitmap, copy and paste it (e.g., with 
Ctrl∪c, Ctrl∪v, Ctrl∪v) so that you get two copies of it, one below the other, then rename one of them BitMap00. This is 
the spare copy of the original, which we will rename back to Bitmap0 once we are done with our experiment. Below we 
reproduce the code of BitMap0; the parts to be modified are bold-printed. 

Private Sub BitMap0(hMax As Integer, wMax As Integer, pixelArray As Variant) 
   

  ' Gray-scale, no color 
 Dim H As Integer, w As Integer, RedVal As Integer 
Dim GreenVal As Integer, BlueVal As Integer 
 For H = hMax To 0 Step -1 
  For w = 0 To wMax - 1 
    RedVal = pixelArray(H, w) 
    GreenVal = pixelArray(H, w) 
    BlueVal = pixelArray(H, w) 
    WriteAPixel RedVal Mod 256, GreenVal Mod 256, BlueVal Mod 256 
  Next w 
' Do not change the following, essential row padding 
 w = wMax * 3 
  Do While (w Mod 4) <> 0 
    WriteAByte 0 
    w = w + 1 
  Loop 
Next H 
End Sub 

(6) In BitMap0, now make the following substitution (again shown in boldface), which replaces the direct proportional-
ity of the earlier gray scale with three distinct bands covering specific intervals, converting Mapper into a Bander. The 
resulting map is shown in Fig. 8.22.1b, which now has boundaries similar to those of a contour diagram. These bounda-
ries are crude, having their resolution determined by the size of the underlying array, but their computation requires no 
further processing and is therefore very quick. It can therefore serve as a quick-and-dirty substitute for a contour diagram.  

Private Sub BitMap0(hMax As Integer, wMax As Integer, pixelArray As Variant) 
   

' Gray-scale, no color 
Dim H As Integer, w As Integer, RedVal As Integer 
Dim GreenVal As Integer, BlueVal As Integer 
For H = hMax To 0 Step -1 
  For w = 0 To wMax - 1 
    If pixelArray(H, w) < 85 Then 
      RedVal = 85 
      GreenVal = 85 
      BlueVal = 85 
    ElseIf pixelArray(H, w) < 170 Then 
      RedVal = 170 
      GreenVal = 170 
      BlueVal = 170 
   ElseIf pixelArray(H, w) >= 170 Then 
      RedVal = 255 
      GreenVal = 255 
      BlueVal = 255 
    End If     
    WriteAPixel RedVal Mod 256, GreenVal Mod 256, BlueVal Mod 256 
  Next w 
 

' Do not change the following, essential row padding 
  w = wMax * 3 
 Do While (w Mod 4) <> 0 
    WriteAByte 0 
    w = w + 1 
  Loop 
Next H 
End Sub 
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(7) Now that we have established the principle of plotting bands, here is a more flexible example of coding, for a flexi-
ble number of bands (here: 15). Incorporate this in your BitMap0, and verify that the resulting banded map is similar to 
Fig. 8.22.1c.   

Private Sub BitMap0(hMax As Integer, wMax As Integer, pixelArray As Variant) 
   

' Gray-scale, no color 
 

Dim H As Integer, i As Integer, iMax As Integer, w As Integer 
Dim RedVal As Integer, GreenVal As Integer, BlueVal As Integer 
   

  

iMax = 15 
For H = hMax To 0 Step -1 
  For w = 0 To wMax - 1 
    If pixelArray(H, w) < Int(255 / iMax) Then 
      RedVal = 0 
      GreenVal = 0 
      BlueVal = 0 
    End If 
    For i = 1 To iMax - 1 
     If pixelArray(H, w) > i * Int(255 / iMax) And _ 
        pixelArray(H, w) <= (i + 1) * Int(255 / iMax) Then 
        RedVal = i * Int(255 / iMax) 
        GreenVal = i * Int(255 / iMax) 
        BlueVal = i * Int(255 / iMax)    End If     
      End If 
    Next I 
    WriteAPixel RedVal Mod 256, GreenVal Mod 256, BlueVal Mod 256 
  Next w 

 

' Do not change the following, essential row padding 
   

  w = wMax * 3 
  Do While (w Mod 4) <> 0 
    WriteAByte 0 
    w = w + 1 
  Loop 
Next H 

 

End Sub 
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Fig. 8.22.1: Three maps of the same input data: a: with a gradual gray-
scale, b: with three bands, and c: with a user-defined number of bands. 

(8) Use the following code to emphasize the central portion of the graph, as was done, e.g., in Fig. 1.5.3. This leads to 
the banded map of Figs. 8.22.1d through  8.22.1f  for various values of iMax. 
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Fig. 8.22.1 cont’d: Three banded maps of the same input data, with emphasis on the central 
data values: d: with iMax = 15, e: with iMax = 8, and f: with iMax = 5. Panel d illustrates 
that too many bands will blur the effect, and approaches a gradual, non-banded display.  

Private Sub BitMap0(hMax As Integer, wMax As Integer, pixelArray As Variant) 
   

' Gray-scale, no color 
   

Dim H As Integer, i As Integer, iMax As Integer, w As Integer 
Dim RedVal As Integer, GreenVal As Integer, BlueVal As Integer 
   

iMax = 15 
For H = hMax To 0 Step -1 
  For w = 0 To wMax - 1 
    If pixelArray(H, w) < Int(127 / iMax) Then 
      RedVal = 0 
      GreenVal = 0 
      BlueVal = 0 
    End If 
    For i = 1 To iMax - 1 
      If pixelArray(H, w) > i * Int(127 / iMax) And _ 
        pixelArray(H, w) <= (i + 1) * Int(127 / iMax) Then 
        RedVal = i * Int(255 / iMax) 
        GreenVal = i * Int(255 / iMax) 
        BlueVal = i * Int(255 / iMax) 
      End If 
    Next i 
    For i = iMax To 2 * iMax - 1 
      If pixelArray(H, w) > i * Int(127 / iMax) And _ 
        pixelArray(H, w) <= (i + 1) * Int(127 / iMax) Then 
        RedVal = (2 * iMax - i) * Int(255 / iMax) 
        GreenVal = (2 * iMax - i) * Int(255 / iMax) 
        BlueVal = (2 * iMax - i) * Int(255 / iMax) 
      End If    Next I 
    WriteAPixel RedVal Mod 256, GreenVal Mod 256, BlueVal Mod 256 
  Next w 
   

' Do not change the following, essential row padding 
   

  w = wMax * 3 
  Do While (w Mod 4) <> 0 
    WriteAByte 0 
    w = w + 1 
  Loop 
Next H 
   

End Sub 

(9) You can still use a “1” in the top left-hand corner of the highlighted array to limit the range of input values over 
which the bands apply.  

(10) By carefully selecting your minimum and maximum limits as well as the value of iMax, you can control the range 
and values at the boundary lines. You can then identify these boundary lines with overlaying numbers on the banded 
map, by highlighting the plot area, typing the number in the formula window, and using the Enter key to deposit it in the 
middle of the plot area. Then highlight the deposited number and modify its appearance, and also change the size and po-
sition of the surrounding box, to yield a result such as shown in Fig. 8.22.1f. Try it!  

(11) Finally, when you are done exploring such alternatives, interchange the labels BitMap0 and BitMap00 to return to 
the original Mapper.  
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The new Mapper is an elaboration of the above approaches, which you can consult to see what the 
code for such a finished macro might look like. Using color (or gray) bands rather than a gradual scale is 
helped by the optical illusion that enhances our perception of contrast between two adjacent areas of dif-
ferent uniform grayness or color.  

The main point of this case study is to show how easily you can test a possible extension of existing, 
open-access code, such as in going from Fig. 8.22.1a to 8.22.1b, and how, through a series of small im-
provements, you can then get it to do what you want.   

9.1 A measure of error, pE (AE3 pp. 399-401) 
So far we have dealt mostly with experimental uncertainty and the resulting imprecision. However, in 

this and the following chapters we will often encounter well-defined mathematical functions f(x), which 
are not subject to the inherent vagaries of experimental variability (i.e., they are precise) but which, for a 
variety of reasons, can still be inaccurate.   

Before delving into a detailed discussion of likely sources of numerical inaccuracy, which we will 
postpone until chapter 11, we must first define a useful criterion for the reliability of computed results or, 
if you will, a measure of their ‘number of significant figures’. Several such criteria have been proposed, 
all relying on reference functions fref that are supposed to be above reproach, so that we can find the abso-
lute error, Eabs = f–fref, the relative error, Erel = (f–fref)/fref or, more usefully, the absolute values of these, 
|Eabs| = |f–fref| and |Erel| = |(f–fref)/fref| respectively.  

Usually, the relative error is the more useful quantity, because Excel displays and stores its results as 
up to 15 decimals, regardless of the number of leading or trailing zeros. Unfortunately, the relative error 
|Erel| cannot be computed when fref = 0. Here we will therefore use a combined criterion, based on either 
|Erel| or |Eabs|, viz.,  

 pE =  – log  | f | if  f ≠  0,   fref = 0 

 pE =
ref

ref

f
ff −

− log   if  f ≠ fref,  fref ≠ 0 (9.1.1) 

 pE =  pEmax if  f = fref   
where p denotes the negative ten-based logarithm, as in pH. This definition specifies the magnitude (i.e., 
the absolute value) of the error in a way that approximates the number of unaffected, significant decimals. 
Furthermore we will use  

 pEmin = 0 pEmax = 14 (9.1.2) 
 

where a rather conservative definition for pEmax is used because reference data are often rounded from re-
sults with higher numerical accuracy, and the rules used for such rounding are not always evident, see 
section 9.6.4. It can make a difference of ±1 in the least significant digit whether one consistently rounds 
up (i.e., from 3.5 to 4 and from –3.5 to –3) or down, rounds away from zero (i.e., from 3.5 to 4 and from –
3.5 to –4) or towards it, or uses some other rounding scheme, such as bankers’ rounding (to the nearest 
even digit, i.e., round 2.5 down to 2, but round 3.5 up to 4) to avoid systematic bias in the above methods. 
When the last digit is uncertain to ±1, a 15-digit number starting with 1.001 will have a corresponding 
relative uncertainty of about 10–14, whereas a 15-digit number starting with 0.999 with the same uncer-
tainty of ±1 in its last digit will have a resulting relative uncertainty of 10–15. Given that a common round-
ing error of ±1 in the least significant digit can lead to a pE-value between 14 and 15, we will consider pE 
= 14 to be as good as can be expected, and usually truncate the pE scale accordingly in displaying pE-
values. Excel will still display a 15th digit, which may be considered a guard digit. The only time we will 
use the full pEmax = 15 is when calibrating algorithms with NIST StRD tests or with equivalent results ob-
tained with extended-precision XN. (The NIST data were obviously obtained with MPFun, the model for 
XN.)   

A pE-value of 14 indicates that the first 13 decimals displayed will be reliable, and the 14th will be cor-
rect to within ±1; a pE of 6.4 that the first six decimals can be trusted; and a pE of 0 that none of them can 
be. In Excel, with its present limit of 15 decimals, little useful information is gained by extending the pE 
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scale below 0 or beyond 14. This range, incidentally, is like that of the pH, which chemists have used 
since 1909.  

We note that pE depends on the error of the function f for a particular set of input parameters. There-
fore, the pE of a function of n parameters will itself be a function of those n parameters. Especially for 
functions of a single parameter, pE is often best displayed graphically, as illustrated in sections 9.2, 11.6 
and 11.7. When a single, fixed number characterizing the accuracy of a function or macro over its entire 
range is required, the most conservative measure would be to list its lowest value, pEmin. For many practi-
cal applications, however, such a number might scare users away from perfectly acceptable behavior in a 
more limited range of input parameters. A graphical display of pE as a function of x will then be more in-
formative than a single number, as it allows users to draw their own conclusions. 

The concept of pE used here is closely related to that of LRE (Logarithm of the Relative Error) intro-
duced by B. D. McCullough in Am. Statist. 52 (1998) 358. The shorter expression pE explicitly denotes 
the negative ten-based logarithm of (the magnitude of) the relative or absolute error. 

Other criteria are sometimes useful, such as the performance measure P(x) used by Cook, Cox, Dain-
ton & Harris in their NPL Report CISE27/ 99, downloadable from http: // www. npl. co. uk / ssfm / download / 

documents / cise27_99.pdf, which highlights how many more significant decimals are lost by a particular 
function than would be lost by an optimally stable algorithm performing the same task. Such a criterion 
can be very helpful to designers of algorithms, but has little relevance for most end users, who will often 
not know (or may not even have access to) information on such an optimal algorithm. The latter is, any-
way, a moving target.  

The definition (9.1.1) depends on the availability of a reliable set of reference algorithms. Here we will 
use cases with known derivatives, and in chapter 11 we will use as reference those otherwise well-tested 
algorithms that, through the use of extended numberlengths, can move their unavoidable truncation errors 
to digits sufficiently far down to become insignificant. The higher accuracy functions described in sec-
tions 11.6 and 11.7 were indeed checked by comparison with their extended numberlength versions, as 
well as with standard tables. The latter are limited to specific input values, but a set of high-quality com-
parison values for a large number of scientific functions, for any input value, is available in Jan Myland’s 
Equator software. 

Please keep in mind that even a function f(x) of a single variable x will typically cover an infinite 
number of values, so that testing it for all possible values x would still take an infinite time, an uninviting 
proposition. Instead, we will sample the function over its applicable range, and will thereby run the risk of 
missing some peculiar behaviors restricted to small patches in parameter space. This cannot be helped, 
other than by being vigilant about sampling with higher resolution in suspect areas, such as those near 
discontinuities and singularities.     

Another benefit of a graphical display of pE is that it can highlight major discontinuities, and thereby 
may identify regions in parameter space where the function as provided might, e.g., cause problems when 
differentiated numerically. In Excel functions, such discontinuities are sometimes artifacts caused by 
piecemeal approximations, see Fig. 11.7.1.  

***** 
As calculators and computers replaced longhand calculations, the concept of significant digits (deci-

mals, numbers, or figures) was introduced as a didactic device to indicate the inherent limitations of nu-
merical answers. That measure, however, cannot withstand close scrutiny, and tends to disappear later in 
the curriculum, to be replaced by more specific estimates, such as standard deviations or confidence lim-
its. Indeed, standard statistical textbooks and NIST standards don’t even mention it. 

In binary counting, each digit is either right or wrong, and is therefore, unambiguously, significant or 
not. But in decimal counting this is not the case: 8.3, when known to ± 0.4, is underspecified with one 
digit, and overspecified with two. This illustrates the problem with significant decimals: it implies an in-
teger for answer. But once we realize this implied constraint, and drop it, the solution is obvious: the num-
ber of significant digits is then simply pE, which in this example is –log(0.4/8.3) =  1.3 or, if you wish, 
1.32, indeed between 1 and 2. (It is seldom useful to specify pE to more than one or two decimal places.) 
This simple generalization of the concept of significant digits can thus rescue its scientific significance. 
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9.2.9 A general model (for numerical differentiation; AE3 pp. 416-420)   
In Excel, numbers without declared dimensions, and those dimensioned “As Double”, are represented 

by one bit for their sign, 52 bits for their mantissa, and 11 bits for their exponent, for a total of 64 bits. As 
the mantissa ignores leading zeros, the leading bit must be a 1, which is therefore implied. This makes ef-
fectively 53 bits available for the mantissa, which consequently ranges from 0 to 253–1 ≈ 9.00720×1015. 
The relative uncertainty ε of these numbers is therefore one in in 253–1 or ±1/(253–1) ≈ ±1.110223×10–16, 
the more precise value for the number we called ε in section 9.2.2. Any bits beyond those that can be ac-
commodated in the mantissa are simply ignored, i.e., the binary number is truncated to fit the available 
space. However, in what follows we will use the term cancellation noise to distinguish it from the error 
introduced by truncating Taylor expansions. 

To illustrate cancellation noise we will first consider the arguments of the functions –f–1 and f1 in the 
simplest equation for central differencing, (9.2.4) or (9.2.9), where cancellation noise results from taking 
the relatively small difference between f–1 and f1.  

Lopping off all bits in the mantissa beyond the effectively available 53 results in relative errors that 
are randomly distributed between 0 and ε. These errors can be described as ε times a uniform distribution 
U(0, 1), with a lower limit a of 0 and an upper limit b of 1 or, equivalently, as a bias of ε/2 plus a uniform 
distribution ε U(–½, ½). A uniform distribution U(a, b) has a mean value of (a+b)/2 and a variance of (b–
a)2/12, so that the mean ε/2 of ε U(0, 1) replaces the just-mentioned bias plus the zero mean of ε U(–½, 
½). Both ε U(0, 1) and ε U(–½, ½) have a variance of 1/12 and, therefore, a standard deviation of 1/√12 ≈ 
0.2887.  

The numerical computation of a difference such as f1 – f–1 in the numerator of (9.2.4) or (9.2.9) in-
volves three distinct stages: we first generate the arguments x+δ of f1 and x–δ of f–1, then compute their 
formulas, f1 and f–1, and finally find their difference, f1 – f–1. In the first stage we replace x by x0 (1 + ε/2 ± 

ε/√12), and therefore compute the functions f1 = f (x + δ) and f–1 = f (x – δ) as 
  f1 = f(x0 + εx0/2 ± εx0/√12 + δ) ≈ f0 + (εx0/2 ± εx0/√12 + δ) f0

I  (9.2.44) 
and  
  f–1 = f(x0 + εx0/2 ± εx0/√12 – δ) ≈ f0 + (εx0/2 ± εx0/√12 – δ) f0

I  (9.2.45) 
where we approximate the function by the first two terms of its Taylor series, see (9.2.5).  

 Before they can be subtracted, these functions must be computed and then temporarily held or stored, 
at which point they will again be truncated. Inclusion of the corresponding errors will then lead to  
          f1 ≈ (1 + ε/2 ± ε/√12) f0 + (ε x0/2 ± ε x0/√12 + δ) (1 + ε/2 ± ε/√12) f0

I  
      ≈ (1 + ε/2 ± ε/√12) f0 + (ε x0/2 ± ε x0/√12 + δ)  f0

I  (9.2.46) 
and a corresponding expression for f–1. Taking their difference yields   
       f0

I
calc = (f1 – f–1) / 2δ ≈ f0

I
 ± ε  f0 / 2 δ √6 ± ε  x0 f0

I
 / 2 δ √6 ≈ f0

I ± (ε / δ √24) (f0+x0 f0
I)    (9.2.47) 

where the bias terms cancel each other, and the two noise terms come from computing x and f(x) respec-
tively, and are combined by adding their variances, i.e., as the square root of the sum of the squares of 
their standard deviations, in this case √(1/12+1/12) = √(1/6) = 1/√6.  

For j = 5, see (9.2.12), we likewise find 

 
δ12

)(1881)12/ε( I
000

2222
I

0
I
,0

fxf
ff calc

++++
±=     

                  
δ

)(
ε27428.0

I
000I

0
fxf

f
+

±≈    (9.2.48) 

and, in general, f0
I
calc = f0

I ± cj (f0 + x0 f0
I) / δ. Dependent on the nature of the function f0 and on the magni-

tude of x0, one of the two error terms in (f0+x0f0
I) may be dominant.  

It may be useful to consider the magnitude (i.e., absolute value) of the relative errors. For a value a, 
with an error ∆, the relative error is ∆/a, and its absolute value is ∆/a, which can therefore be formu-
lated for the expressions in Table 9.2.4 as  
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Some values of cj are listed in Table 9.2.6, as calculated from the integers that multiply the terms f±i in 
the equations of Table 9.2.4. Table 9.2.6 also contains some related coefficients. 

            j        bj      cj     dj                    ε1/ j  

    3 1.666667×10–1 2.266233×10–17 4.081395×10–6 4.8062174×10–6 
 1 5 3.333333×10–2 3.045159×10–17 7.442764×10–4 6.4429097×10–4 

 1 7 7.142857×10–3 3.467493×10–17 6.982307×10–3 5.2574226×10–3 
      9 1.587502×10–3 3.741589×10–17 2.429285×10–2 1.6875933×10–2 
   11 3.607504×10–4 3.937709×10–17 5.379360×10–2 3.5447266×10–2 
  13 8.325008×10–5 4.086932×10–17  9.335571×10–2 5.9254845×10–2 
   15       1.942502×10–5 4.205382×10–17 1.399440×10–1 8.6369555×10–2 

Table 9.2.6: Approximate numerical values of the coefficients bj, cj, and dj, in equations (9.2.49), 
(9.2.50), and (9.2.54) for the compact central differencing expressions of the first derivative f0

I 
listed in Table 9.2.4 for ε = 1/(253–1) ≈ 1.110223×10–16. The last column lists the values of ε1/ j. 

In numerical differentiation by compact central differencing, we have control over only one parameter, 
the step size δ. How do we choose it so that our answer has the best possible accuracy? We will here fo-
cus on the first derivative, using the expressions listed in Table 9.2.4. Our answers will therefore contain 
both the cancellation noise of (9.2.49) and the systematic errors that can be summarized from section 
9.2.5 as  

 I
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1δ ffbE j
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−=   (9.2.50) 
where bj is the absolute value of the coefficient of the term f0

J δj–1 on the right-hand side of Table 9.2.4 for 
a given value of j; b3 =1 / 3!, b5 = 4 / 5!, b7 = 36 / 7!, etc. In total we then have 
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where we again use the absolute values to ensure that the logarithms and/or roots can always be com-
puted, regardless of the signs of f0, f0

I, and f0
J. After all, we are only interested in minimizing the absolute 

magnitude of the total error, which at the optimal value δopt of δ follows from (9.2.51) as  
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so that   
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with 
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for which Table 9.2.6 includes some values.   
Figure 9.2.6 illustrates the above relations with the function f(x) = x20 for x0 = 1.234, by varying the 

magnitude of δ over eight decades, from δ = 10–3 to δ = 10–11. In Fig. 9.2.7 we display equivalent results 
for two different values of x0, one negative and one positive, as well as of different magnitudes, and in 
Fig. 9.2.8 for two larger values of j.  

In Fig. 9.2.6 the asymptotes are well represented by the lines predicted by (9.2.49) and (9.2.50), while 
the maximum in pE is indeed found near the value δopt given by (9.2.53) as indicated by an arrow. 
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Fig. 9.2.6: Plot of pE vs. pδ for f(x) = x20, and its numerical analysis for j = 3 with x0 = 1.234 (open black 
circles). The gray straight line with slope –1 through the data is computed with (9.2.49), and the gray line 
with slope +2 with (9.2.50). The vertical arrow drawn at pδ = pδopt is calculated with (9.2.53). The gray-
filled circles near the center-bottom represent uniform noise U(–½, ½) added to a baseline with slope –1.       
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Fig. 9.2.7: Plot of pE vs. pδ for f(x) = x20, and its numerical analysis for j = 3 with x0 = –12.34 (left 
panel) and 0.001234 (right panel). The gray straight lines with slope –1 are based on (9.2.49), those 
with slope +2 on (9.2.50), and the vertical arrows are drawn for pδopt as found from (9.2.53).  
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Fig. 9.2.8: Plot of pE vs. pδ for f(x) = x20 with x0 = 1.234, for j = 9 (left panel) and 15 
(right panel). The gray straight lines with slope –1 are based on (9.2.49), those with slope 
+2 on (9.2.50), and the vertical arrows are drawn for pδopt as found from (9.2.53). Note 
that the pE and pδ scales are both shifted with respect to those in Figs. 9.2.6 and 9.2.7. 
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Different behavior can be expected depending on whether f0 is larger or smaller than x0f0
I. We can see 

this with the exponential function f(x) = ex, where f0
I = f0, where merely changing x0 from x0 » 1 to x0 « 1 

can serve as our test. We illustrate in Figs. 9.2.9 and 9.2.10 that this model prediction indeed holds. For x0 
» 1, the location of the right-hand asymptote and the value of pδopt change with x0 as –(1/j) log(x0),  
whereas both are essentially constant for x0 « 1, confirming the presence of two different stages where 
cancellation errors can occur in central differencing, each with its own response.       
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Fig. 9.2.9: Plot of pE vs. pδ for f(x) = ex, and its numerical analysis for j = 3 with x0 = 500 (left panel) and 
5 (right panel). The gray straight lines are the model asymptotes, the vertical arrow is positioned at pδopt. 
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Fig. 9.2.10: Plot of pE vs. pδ for f(x) = ex, and its numerical analysis for j = 3 with x0 = 0.05 (left panel) and 
0.0005 (right panel). The gray straight lines are the model asymptotes, the vertical arrow is positioned at pδopt. 

9.2.10 Implementation (AE3 pp. 421-423)  

How can we use the above to compute the first derivative when, according to (9.2.53), the crucial pa-
rameter, the step size δo

J
pt, not only requires the function f0, but also its sought first derivative f0

I, and even 
the higher derivative f0 ? We solve this riddle by realizing that we can use approximate values for f0

I and 
f0

J, based on a first estimate, such as δ ≈xε1/ j, and follow where that leads us. This yields the following 
iterative algorithm: 

(1) read the number j of equidistant samples (an odd integer), the function f(x), and the particular value 
x = x0 for which the derivative is sought;  

(2) use δ ≈x0ε1/ j to estimate the step spacing, where ε = 2–52 for Excel’s double precision; 
(3) sample the function in j equidistant steps from x = x0 – (j+1) δ/2 to x0 + (j+1) δ/2; 
(4) use these samples to estimate both f0

I and f0
J;   

(5) now estimate δopt with (9.2.53); and finally   
(6) use this estimate for δopt to compute an improved value for f0

I. 
In a single iteration, this algorithm produces quite satisfactory results when tested with simple func-

tions for which the first derivative f0
I is known, as in Fig. 9.2.11, where we find pE ≥ 9.5 for j = 3, pE ≥ 

11 for j = 5, pE ≥ 12 for j = 7, and pE ≈ 13 for j = 9. While there is no guarantee that such good values 
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will be observed with other functions or x-values, these are certainly encouraging results. This approach is 
implemented in the macro Deriv1 of the MacroBundle, and is more fully described in J. Chem. Sci 121 
(2009) 935-950, see http :// www . ias . ac . in / chemsci / Pdf-Sep2009 / 671. pdf. No significant further im-
provement is obtained with further iterations.  

As can be seen in Figs. 9.2.7 through 9.2.11, random noise limits a more accurate single determina-
tion, but averaging over a small range of neighboring δ-values might yield a more precise result. How-
ever, a tenfold increase in noise reduction would require 100 repeats. It is therefore much easier to use 
XN’s extended precision to obtain similar or better answers.   

Since we here consider accuracies beyond the first six or seven digits, Fig. 9.2.11 does not display the 
values of the derivatives themselves, but instead their pE-values, i.e., their number of significant figures, 
using as reference their algebraic first derivatives as evaluated on Excel. In a few cases we had to deviate 
from this: for the error function erf(x) we instead used the function cErf(x) of section 11.8, but let Excel 
evaluate its analytical derivative, (2/√π) exp(–x2) for computing pE. For the Bessel functions, which in 
Excel appear to use single-precision algorithms, we used the corresponding double-precision functions 
from XN.xla for both the function f(x0) to be differentiated and as reference values f I (x0)ref for determin-
ing pE. Comparison of Excel’s J0(x), J1(x), Y0(x), and Y1(x) with their numerical values as listed in, e.g., 
the Handbook of Mathematical Functions, M. Abramowitz & I. A. Stegun, eds., Dover (1968) pp. 390-
391, confirms the low accuracy of Excel’s Bessel functions, which were part of the Data Analysis Toolkit 
that was fully integrated into Excel 07. It is beyond my comprehension why Microsoft in 2007, when they 
could (and should) have exploited the quadruple precision option made possible by the wide availability 
of x64 cpu’s, decided to incorporate their old single-precision algorithms instead. 

 We see that the approximation δ ≈ x0 ε1/ j is equivalent to approximating dj by ε1/ j, and x0 f0
I /f0

J by x0. 
This is appropriate for f0 « x0 f0

I, while the alternative δ ≈ ε1/ j is more appropriate when f0 » x0 f0
I. 

At a practical level, in a double-precision environment, one should preferably use j = 5, 7, or 9 (for the 
most accurate results) when the sampling range or footprint ±(j–1) δ / 2 is not important, and j = 3 when it 
is, choices that Deriv1 leaves to the user. In double precision, there appears to be no good reason to use j-
values higher than 9.       

Differentiation obviously requires special care when the function to be differentiated has discontinui-
ties and/or singularities. Discontinuities occur in nature with, e.g., phase transitions. We can also encoun-
ter them with functions, especially with those computed using piecemeal approximations, as illustrated in 
Fig. 11.7.1. In the case of discontinuities, the function value changes suddenly, and so may its derivative, 
and it is therefore crucial that all data used in computing the derivative are taken on the same side of that 
discontinuity.  

Exercise 9.2.5: 
(1) To illustrate the use of Deriv1, on a new spreadsheet place labels for x, f (x), f  ′(x), and f  ″ (x) in cells B2:B5. Next to 

these, place a value for x in C2, and in C3, next to the label f (x), deposit an explicit, quasi-algebraic function f (x), i.e., 
written in the Excel-like parser formalism described in the Math Formula String section of the help file, and as text, i.e., 
not preceded by an equal sign, see Fig. 9.2.12. In this example, a truly algebraic expression would read x2 instead of x^2. 
You can precede the formula by a (non-showing) apostrophe. (Such an apostrophe is not needed here, since Excel inter-
prets this as text, but is a still good general practice, because it would be required if the expression were to start with, e.g., 
a minus sign.) Verify that C4 indeed yields the first derivative f  ′(x) = [(x2+1)–2x(x+3)]/(x2+1)2 of the function f (x) = 
(x+3)/(x2+1) in cell C3 for the x-value in C2.  

(2) In cell C4, next to the label for f  ′(x), insert the instruction =Diff1(C2,C3), which will yield f ′(x), the first de-
rivative of the mathematical expression for f (x) in C3 for the x-value in C2.  

 

In such cases we may have to use the asymmetric expressions for lateral differencing. The approach is 
the same as for central differencing, but the pE-values will be somewhat lower. Incidentally, please keep 
in mind that a function at its discontinuity has two values, and is often represented on a spreadsheet by 
their average, but such an average value should not be used in asymmetric differencing.  

Singularities are rather rare in nature, but are quite common in math. Consequently, our necessarily 
simplified models of natural phenomena may well include such singularities. 

The approach used in this section is quite general, but has here been limited to equidistant data, be-
cause these yield simpler solutions. When f is a function of multiple variables, as in f (x, y, z, …), the 
above method yields estimates of the partial derivative, ∂  f    / ∂  x. 
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x 0                 f ( x )                          f I( x ) pE  at j = 

3 5 7 9 11 13 15
1.234 4-3x +2x 2-x 3 = 1.46443110 -3+4x -3x 2 = -2.63226800 10.62 14.16 13.82 14.36 14.52 15.77 15.47

1.234 x 20 = 67.0352439 20 x 19 = 1086.47073 10.00 11.89 12.65 13.83 13.70 15.20 14.73

1.234 x -20 = 0.01491753 -20 x -21 = -0.24177514 9.87 11.69 12.62 13.05 13.31 13.74 13.65

1.234 x 1/20 = 1.01056850 0.05 x -19/20 = 0.04094686 10.47 12.20 13.06 13.85 12.84 13.07 14.31

1.234 x -1/20 = 0.98954202 -0.05 x -21/20 = -0.04009490 10.35 11.40 12.59 13.10 12.95 13.60 13.28

1.234 ln(x ) = 0.21026093 1/x  = 0.81037277 11.70 13.69 13.98 13.72 14.86 14.12 15.86

1.234 exp(x ) = 3.43494186 exp(x ) = 3.43494186 10.78 12.99 14.01 14.93 14.71 14.47 15.04

1.234 sin(x ) = 0.94381821 cos(x ) = 0.33046511 10.97 12.93 13.96 14.08 15.77 14.50 15.77

1.234 sinh(x ) = 1.57190806 cosh(x ) = 1.86303380 11.13 13.01 15.02 14.29 14.53 14.56 14.88

0.567 arcsin(x ) = 0.60285925 1/√(1-x 2) = 1.21400801 11.52 12.73 14.01 14.23 14.59

1.234 arsinh(x ) = 1.03755875 1/√(1+x 2) = 0.62959660 10.86 12.98 13.45 14.01 15.45 14.50 14.16

1.234 tan(x ) = 2.85602984 1+tan2(x ) = 9.15690644 10.38 13.51 12.78 13.79 13.33 14.37 13.61

1.234 tanh(x ) = 0.84373566 1-tanh2(x ) = 0.28811013 10.69 12.36 13.18 13.32 14.04 14.14 13.81

1.234 arctan(x ) = 0.88976245 1/(1-x 2) = 0.39639188 11.47 13.05 13.45 13.77 14.95 14.90 14.51

0.567 artanh(x ) = 0.64309026 1/(1+x 2) = 1.47381546 11.76 12.89 13.02 13.89 14.00 14.02

1.234 erf(x ) = 0.91903942 (2/√π)exp(-x 2) = 0.24611072 10.25 12.10 12.62 13.36 13.07 13.52 13.78

1.234 I0(x ) = 1.41848958 I1(x ) = 0.742135021 11.39 12.58 13.20 13.85 15.13 14.38 14.32

1.234 J0(x ) = 0.65404541 -J1(x ) = -0.50677701 10.70 13.22 14.01 14.05 14.10 14.62 14.38

1.234 K0(x ) = 0.30411714 -K1(x ) = -0.41218265 10.45 12.75 12.86 13.60 14.83 14.29 14.33

1.234 Y0(x ) = 0.24877388 -Y1(x ) = 0.596023514 10.91 12.53 13.62 14.58 15.73 14.30 14.33
 
 

Fig. 9.2.11: The accuracy of the first derivative f0
I
calc  obtained with Deriv1 for various values of 

j, for a number of simple functions f (x) at x = x0 for which the first derivative f0
I is known. Be-

cause the values of f0
I
calc  differ only in their less significant digits, we only show their pE-values.  

 

Exercise 9.2.5: 
(1) To illustrate the use of Deriv1, on a new spreadsheet place labels for x, f (x), f  ′(x), and f  ″ (x) in cells B2:B5. Next to 

these, place a value for x in C2, and in C3, next to the label f (x), deposit an explicit, quasi-algebraic function f (x), i.e., 
written in the Excel-like parser formalism described in the Math Formula String section of the help file, and as text, i.e., 
not preceded by an equal sign, see Fig. 9.2.12. In this example, a truly algebraic expression would read x2 instead of x^2. 
You can precede the formula by a (non-showing) apostrophe. (Such an apostrophe is not needed here, since Excel inter-
prets this as text, but is a still good general practice, because it would be required if the expression were to start with, e.g., 
a minus sign.) Verify that C4 indeed yields the first derivative f  ′(x) = [(x2+1)–2x(x+3)]/(x2+1)2 of the function f (x) = 
(x+3)/(x2+1) in cell C3 for the x-value in C2.  

(2) In cell C4, next to the label for f  ′(x), insert the instruction =Diff1(C2,C3), which will yield f ′(x), the first de-
rivative of the mathematical expression for f (x) in C3 for the x-value in C2.  

 

In such cases we may have to use the asymmetric expressions for lateral differencing. The approach is 
the same as for central differencing, but the pE-values will be somewhat lower. Incidentally, please keep 
in mind that a function at its discontinuity has two values, and is often represented on a spreadsheet by 
their average, but such an average value should not be used in asymmetric differencing.  

Singularities are rather rare in nature, but are quite common in math. Consequently, our necessarily 
simplified models of natural phenomena may well include such singularities. 

The approach used in this section is quite general, but has here been limited to equidistant data, be-
cause these yield simpler solutions. When f is a function of multiple variables, as in f (x, y, z, …), the 
above method yields estimates of the partial derivative, ∂  f    / ∂  x.  

***** 
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In this section we have seen how, starting from the Taylor expansion, and with a little matrix algebra, 
we can find useful approximations to compute derivatives. At this point you may well ask why, in this 
book about scientific data analysis, so much space is devoted to differentiating theoretical expressions. 
One reason is to illustrate that mathematical conditions such as lim δ → 0 do not translate as such into 
computer routines, because additional error sources can get involved, as cancellation errors do with dif-
ferentiation. Another is the interesting interplay of systematic and random-like errors, i.e., of aspects re-
sembling inaccuracy and imprecision. Moreover, we see that problems that are relatively straightforward 
in formal mathematics may sometimes be complicated numerically, while integration illustrates the oppo-
site, see section 9.4.  

But the most compelling reason for our emphasis on differentiation is that it is involved in virtually all 
optimization methods. Moreover, while most mathematical functions can be differentiated formally, in 
practice this can be quite cumbersome, and often requires the numerical evaluation of special functions 
anyway. Consequently, in a spreadsheet environment, a numerical differentiation is almost always more 
convenient. On the other hand, non-optimal numerical differentiation can limit the ultimate reliability of 
an algorithm. For instance, Excel’s Solver only offers its users the choice between the simplest forms of 
forward and central differencing, i.e., between (9.2.2) and (9.2.4). Not surprisingly, when tested with de-
manding NIST reference data sets such as MGH10 or Bennett5, it only gets the first two decimals consis-
tently right! As a result of such experiences, it is often stated that optimization methods need analytical 
derivatives because they are the only ones that have the required high accuracy. With the approach out-
lined here, and implemented in Deriv1, that argument is no longer so compelling. 

10.10  Matrix inversion, once more (AE3 pp. 485-489) 
Matrix inversion provides an elegant, formal way to solve many problems. However, not all square 

matrices can be inverted; those that cannot be inverted are called singular. Mathematically, there is a 
sharp distinction between singular and nonsingular matrices: a singular matrix has a determinant equal to 
zero, whereas a non-singular matrix doesn’t. Excel has the corresponding instruction MDETERM. But 
such a seemingly well-defined difference can become rather fuzzy when matrices are evaluated on a 
computer with binary math, which cannot represent most fractional decimal numbers exactly. How should 
we interpret a finding that the determinant of a square matrix is about 10–17, or 10–40? Those values are not 
per se small for Excel, which can represent numbers smaller than 10–300. But how do we know whether 
10–17 or 10–40 is significantly different from 0, or is just a zero disguised by round-off errors?  

In least squares analysis, only the matrix X is inverted, or a function thereof, such as XT X in (10.5.6), 
where X is usually assumed to be noise-free. Uncertainties in inverting such a matrix then have nothing to 
do with experimental noise, which would only appear in y, but must be the result of algorithmic inaccu-
racy and/or numerical imprecision in the matrix algebra used.  

As our illustration of the problem, we will use an example taken from Meyer’s Matrix Analysis and 
Applied Linear Algebra, SIAM (2000) pp. 33 and 128. Consider the two simultaneous equations 

 835 x1 + 667 x2 = 168 (10.10.1)  
 333 x1 + 266 x2 =   67 

which have the solution 
 x1 = 1;            x2 = –1 (10.10.2) 

as you can readily verify by substituting these values for x1 and x2 back into (10.10.1).  
Now let there be a small amount of noise in the constant on the right-hand side of the first expression 

in (10.10.1), changing its value from 168 to, say, 167. The solution then becomes 
 x1 = 267;         x2 = –334  (10.10.3) 
Likewise, replacing 67 in the second expression of (10.10.1) by 66 will modify the answer to  
 x1 = –666;      x2 =834   (10.10.4) 

while changing 168 to 169 and, simultaneously, 67 to 66, yields 

 x1 = –932;     x2 = 1167 (10.10.5) 
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When we write (10.10.1) in matrix form as  

 A x = b   (10.10.6) 
with 

  


=A  (10.10.7) 







=








=





 67
168

,,
266333
667835

2

1 bx
x
x

we see that (10.10.1) through (10.10.5) show quite different answers for the coefficients x1 and x2 of x as 
the result of rather minor changes in b1 and/or b2.  

Exercise 10.10.1: 
(1) In rows 3 and 4 of a new spreadsheet, enter the numerical values of A of (10.10.6) in columns B and C, and the cor-

responding values of b in column E. Use row 2 for appropriate labels.  
(2) Verify that (10.10.2) is, indeed, the solution of (10.10.1), by computing x in G3:G4 with the matrix instruction 

=MMULT(MINVERSE(B3:C4),E3:E4) because x = A–1 A x = A–1 b.  
(3) In cell B6 place the instruction =$B$3, put =$B$4 in B7, =$C$3 in C3, =$C$4 in C7, =$E$4 in E7, but =$E$3-1 

in E6. Then copy G3:G4 to G6. You should now find the result of (10.10.3).  
(4) Copy B6:G7 to B8, then replace the minus sign in E8 by a plus sign. This will yield x1 = -265 and x2 = +332, the 

same distance 266 away from x1 = 1and –333 x2 = –1 but in the opposite direction. These are large effects in x for small 
changes in b, but they are symmetrical.  

(5) To clearly offset B8:G9 from B6:G7, you might want to put some light background color in B8:C9, E8:E9, and 
G8:G9, and/or put frames around the areas containing the matrix A and the vectors b and x.  

(6) Copy B6:G9 to B10, and then change the terms 1 in B10 and B12 to 10. The result is again a linear response to the 
change, now by ten times larger amounts. The spreadsheet you have made so far should resemble that in Fig. 10.10.1.  

(7) When you get tired of this game, change the approach to use this spreadsheet more efficiently, as follows.  
(8) Go to Tools  Data Analysis, select Random Number Generation, then set Distribution: Normal, Mean = 0, Stan-

dard Deviation =: 1, click on the round “radio button” to the left of Output Range:, then click on the associated window, 
enter I6:K105, and click OK. This will fill I6:K105 with random Gaussian numbers, our usual approximation of random 
noise.  

(9) In cell I3 place a label for a noise amplitude, and in J3 a value, such as 1E-7.   
(10) Modify the instruction in E6 to =$E$3*(1+$J$3*K6), and that in E7 likewise to =$E$4*(1+$J$3*K7).  
(11) Copy B6:G7 to B8, repair any cell coloring and framing, then copy B6:G9 to B10, B14, B18, B22, … B102. 
 

A B C D E F G
1
2                  A b x
3 835 667 168 1
4 333 266 67 -1
5
6 835 667 167 267
7 333 266 67 -334
8 835 667 169 -265
9 333 266 67 332

10 835 667 158 2661
11 333 266 67 -3331
12 835 667 178 -2659
13 333 266 67 3329

 
 

 

 

Fig. 10.10.1: A spreadsheet illustrating various solutions x = 
A–1 b obtained with a near-singular matrix A by varying b1. 

 
(12) In order to plot the results, in M4 place labels for x1, and in N4 for x2, then place the instruction =G6 in M6, and 

=G7 in N6. Highlight M6:N:7, and copy it to M8, then copy M6:N9 to M10, and so on, to fill the entire column 
M6:N133. Delete M106:N133.   

(13) It is useful to place the instruction =MAX(M6:M105) in cell M2, and then copy it to cell N2, where it will read 
=MAX(N6:N105). Similarly, place the instruction =MIN(M6:M105) in cell M3, then copy it to cell O3. This will help 
you see what axis scales are needed to show all data.     
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(14) Highlight M6:N105 and plot x2 vs. x1. Because you cannot exactly reproduce random noise, you will get some 
other data than shown here, but their general behavior will be the same. 

(15) Repeat with other values for the relative noise amplitude. Two such examples are shown in Fig. 10.10.2.   
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Fig. 10.10.2: Results obtained with the same spreadsheet after modi-
fication to compute and display the effect of noise in b on the compu-
tation.  Relative noise amplitude in panel a: 1E–5, in panel b: 1E–1. 

 
The data shown in Fig. 10.10.2 illustrate that the input noise added to b results in output noise in x that 

is directly proportional to its amplitude, i.e., the response of the matrix operation is linear. That is also to 
be expected: the inversion of A is unaffected by the noise in x, while the multiplication of A–1 and x is a 
strictly linear operation.  

Incidentally, the points in the two plots lie on a straight line through x1 = 1, x2 = –1, with slope  
–1.251877, a number that is the average of the slopes mentioned later in this section, and their distribution 
along that line is indeed Gaussian. Each point on that line in panel b is exactly 10000 times more widely 
spaced on the line through (1, –1) than it is in panel a, just as the relative noise amplitude is also 10000 
times larger.   

Now we ask a different question: what will happen when we add such noise to the elements of A? Ex-
ercise 10.10.2 considers that issue, using the very same spreadsheet you have just made.  
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Fig. 10.10.2: The same spreadsheet after modification to compute and dis-
play the effect of noise in A on the computation.  Same set of noise data, 
but with different relative amplitudes: 1E–6 in panel a, 1E–5 in panel b. 
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Exercise 10.10.2: 
(1) Copy the spreadsheet of Exercise 10.10.1 into a new sheet. Then make the following changes.  
(2) Replace the instruction in B6 by =$B$3*(1+$J$3*I6), that in B7 by =$B$4*(1+$J$3*I7), and likewise 

place =$C$3*(1+$J$3*J6)in C6, and =$C$4*(1+$J$3*J7)in C7. Moreover, to simplify matters, set E6 back to 
=$E$3, and E7 to =$E$4.  

 

    (3) Verify that, for a relative noise amplitude of 0, you get everywhere the same answers, identical to those in 
G3:G4. If not, check your equations. 

(4) Now try various sets of random numbers at a given relative noise amplitude, and then experiment with different 
relative noise amplitudes. You will, again, find different answers than shown in Fig. 10.10.3, because your specific noise 
values will differ, but you will also get the general point: the effect of noise is now highly nonlinear. And the results look 
decidedly non-Gaussian. 

What causes this great sensitivity of x to relatively small fluctuations in A? To find the answer, it is 
helpful to step away from the algebra, and to look instead at a physical interpretation of expressions such 
as (10.10.1), which we can consider as representing two straight lines, say,  

 12 667
835

667
168 xx −=    or, in general,  1

12

11

12

1
2 x

a
a

a
bx −=   (10.10.8) 

and 

 12 266
333

266
67 xx −=                         or 1

22

21

22

2
2 x

a
a

a
bx −=   (10.10.9) 

where the solution of these simultaneous equations defines the values of x1 and x2 at their intersection. 
Look at the slopes of these lines, a11/a12 and a21/a22. Their numerical values are 835/667 ≈ 1.251874 

and 333/266 ≈ 1.251880 respectively, where we have used bold-facing to emphasize their common digits. 
These lines therefore have near-identical slopes. Consequently, the place where these two lines intersect 
is extremely sensitive to small changes in their intercepts, and therefore to changes in the coefficients bi, 
but the real culprits are their almost identical slopes, a11/a12 and a21/a22 respectively, which these inter-
cepts bi do not affect, see (10.10.8) and (10.10.9). The basic problem, therefore, lies in the matrix A rather 
than in the vector b, as exercises 10.10.1 and 10.10.2 confirmed.  

If the slopes a11/a12 and a21/a22 were identical, the matrix A would be singular, and we would not find 
any answer, because parallel lines have no (finite) intersection, but only intersect at “infinity”. In our case, 
A is merely very close to singular. In the next section we will therefore consider how we can characterize 
matrices in terms of their near-singularity or conditioning. With a matrix that is almost singular, it is 
merely a matter of chance how added noise may occasionally bring it very close to that abyss of singular-
ity. In fact, it is not a single singularity, but an infinite collection of them, because for every ratio a11/a12 
there will be a corresponding ratio a21/a22 that will make the second line parallel to the first, and therefore 
create a singularity! And the closer one gets to a singularity, the more even very small fluctuations tend to 
become magnified to noticeable levels. Such a highly nonlinear effect in general will not yield a Gaussian 
output for a Gaussian input.  

A prominent feature of Fig. 10.10.2b is what one might consider an outlier. (If you didn’t find any, re-
turn to Tools  Data Analysis  Random Number Generation, and click OK; this will update the com-
putations with a new set of Gaussian numbers, and also update the graph. You will soon, usually within a 
few tries, find some seemingly extreme points.) Of course, these simulations merely illustrate that, upon 
inverting a near-singular matrix, Gaussian noise affecting the matrix elements does not produce an out-
come with a Gaussian distribution. If you were to make that latter (faulty) assumption, you might be 
tempted to reject the outliers because, were they Gaussian, they would be highly unlikely events indeed. 
But in this case there is no good reason for doing so, other than that such a point might not fit your (incor-
rect) expectation of a linear operation, with a consequently Gaussian output.  

The above, geometric argument is convenient for 2×2 matrices. For larger matrices it is more difficult 
to visualize matters, although it can still be done for 3×3 matrices. There, the general intersection between 
two planar surfaces is a line, and this line in general intersects with the third plane at a point. The three 
space coordinates of that common point are the elements x1 through x3 of the solution, x. When at least 
two of these planes have a similar tilt (as, for lack of a better term, I will call the three-dimensional 
equivalent of the slope of a line), their intersection will again be very sensitive to small parameter 
changes; when those two tilts are identical, the planes are parallel and don’t intersect, and the correspond-
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ing matrix is singular. Again, there will be more than one combination of parameter values where this can 
occur. For larger matrices, things are harder to imagine, but you get the idea of what makes some matrices 
inherently difficult to work with. 

10.11  Eigenvalues and eigenvectors (AE3 pp. 489-494) 
A singular matrix occurs when the simultaneous equations to be solved are fully linearly dependent. 

We have seen in, e.g., sections 2.9, 8.14, and 10.10, that such dependency is not a black-and-white propo-
sition, but instead can exhibit shades of gray. Near-singular matrices are often called ill-conditioned, and 
their numerical inversion may cause problems due to the finite numberlength used in the computations. 
One possible remedy would be to use a longer numberlength, an option we will indeed entertain in chap-
ter 11. Another will be described in section 10.13. But first we will consider an important aspect of square 
matrices that we have not discussed so far, namely its eigenvalues and eigenvectors. 
   In section 10.10 we considered two simultaneous equations, and formulated them in matrix format as  

A x = b  (10.10.6) 
where x and b were vectors, and A denoted a square matrix. We can interpret such a formalism as fol-
lows: the product of A with the vector x is another vector, b, of the same size as x. In the example of sec-
tion 10.10 the vectors were of size 2×1 and can therefore be visualized easily in a graph as arrows point-
ing from the origin to points defined by the two coordinates x1 and x2 of x, or b1 and b2 of b. Forming the 
matrix product A x can then be seen as A transforming vector x into a new vector b of the same size but, 
in general, with a different direction and/or magnitude. And even where we cannot easily visualize vec-
tors in four or more dimensions, this conceptual interpretation of the action of A as operating on x in 
(10.10.6) is readily generalized to more simultaneous equations in more unknowns.  

We will from now on use different symbols in order to make some useful distinctions. We will denote 
square matrices by S, and rectangular ones by R. In this section we will deal only with square matrices, 
and ask whether there are any special n×1 vectors x which, after such action by an n×n matrix S, yield a 
new n×1 vector q that points in the very same (n-dimensional) direction as x, and therefore is only 
changed in length. In that case we should be able to write 

S q = λ q (10.11.1) 
where λ is a scalar,  i.e., a simple (real or complex) numerical multiplier. It turns out that nonsingular 
(i.e., invertible) square matrices S indeed have n such special scalars, which are called their eigenvalues 
λ, with n corresponding eigenvectors q. The German term eigen indicates that these characteristic proper-
ties as it were belong to S, and the term has stuck in English.  

Eigenvalue problems are quite common in matrix algebra, and typically occur not so much when we 
consider simultaneous algebraic equations, as we have mostly done so far, but with simultaneous differ-
ential equations. A famous eigenvalue problem is the Schrödinger wave equation 

H ψ = Ε ψ (10.11.2) 
shown here in its simplest (time-independent) form, which relates the Hamiltonian operator (a differential 
equation in matrix form) H of a quantum-mechanical system and its wavefunctions (eigenvectors) ψ to its 
scalar eigenvalues, the energies E. The field of resulting quantum mechanics is heavily dependent on ma-
trix algebra. Quantum mechanics is the basis of modern atomic-scale physics and chemistry, relativity 
theory applies mostly to very large-scale phenomena, and Newtonian physics to most everything in-
between. Matrix algebra plays a huge role in Newtonian mechanics, and its importance in quantum me-
chanics and relativity is even larger.  

For a 2×2 matrix, the eigenvalues can be found by solving a quadratic characteristic polynomial. If its 
roots are complex, these eigenvalues are each other’s complex conjugates. For a 3×3 matrix, the eigen-
values are given by a cubic equation, i.e., the characteristic polynomial is of 3rd order, etc. Unfortunately, 
equations of fifth or higher order have no known exact solutions, and must therefore be found iteratively. 
General-purpose software for finding eigenvalues and eigenvectors therefore uses an iterative approach 
that approximates the eigenvalues and eigenvectors to within a desired accuracy.  

Only square, nonsingular matrices have eigenfunctions. In general, a nonsingular n×n matrix will have 
n eigenvalues, which need not all be different. When two or more eigenvalues are identical, they are 
called degenerate.   
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Matrix.xla(m) has several functions for finding eigenvalues and eigenvectors, most with names start-
ing with MEigen, as listed in Table 10.9.1. They differ in capability, complexity, and execution speed, 
and which one is best will depend on the particular matrix to which it is applied. For the small matrices 
we will use in our exercises, you will not notice any such differences. Some examples are illustrated in 
exercise 10.11.1.  

Exercise 10.11.1: 
(1) On a clean spreadsheet, place the real, symmetric matrix S shown in B3:C4, as in Fig. 10.11.1. A real (rather than 

complex) square matrix has only real matrix elements mij, and its symmetry (along its main diagonal) requires that  it be 
square with mij = mji. Any real symmetric matrix, or any complex square matrix with complex elements m that are its own 
conjugate transpose (so that the matrix elements mij are the complex conjugates of the elements mji), is called Hermitian, 
and has real eigenvalues. Hermitian matrices are fairly common, as they automatically arise when we form the product of 
a matrix with its transpose (or, in the case of a complex matrix, with its conjugate transpose, which we will denote as SH 
with the superscript H of Hermitian in order to distinguish it from the normal transpose ST). Matrix.xla has the instruction 
=MTC() for a complex transpose, and =MTH() for a Hermitian or complex conjugate transpose. 

(2) Highlight E3:E4, type the instruction =MEigenValQR(B3:C4), and enter it with Ctrl∪Shift∪Enter. You will in-
deed get two real eigenvalues, but they need not be positive integers as in this example.  

(3) Use several other instructions instead, such as MEigenValQL which is meant for tridiagonal matrices (which any 
2×2 matrix automatically is) or the general MEigenValPow. They should all yield the same two eigenvalues, although not 
necessarily in the same order, as you can see in Fig. 10.11.1.  

(4) For each eigenvalue λ there should be one associated eigenvector q. In C7 place the instruction =E3, and find the 
corresponding eigenvector in E7:E8, e.g., with the instruction =MEigenVec(B3:C4,C7).  

(5) In H7:H8 compute the product of S and q 1, and in J7:J8 calculate λ 1 times q 1. Check that the two answers (in Fig. 
10.11.1 connected by double-headed arrow) are identical, i.e., verify that (10.11.1) indeed applies in this example.  

(6) Highlight B6:J8, and copy it to B10, then change the instruction in C11 to =E4, and adjust the references to S in 
E11:E12 and H11:H12 to B3:C4. You should again find an eigenvector that satisfies (10.11.1). Also adjust the labels. 

(7) With the instruction =MEigenVec(B3:C4,E3:E4) in, e.g., F15:G16 you can simultaneously display both ei-
genvectors. Your spreadsheet should now resemble that of Fig. 10.11.1.  

 

A B C D E F G H I J
1
2 MEigenValQR(B3:C4) MEigenValQL(B3:C4) MEigenValPow(B3:C4)
3 S = 6 2 λ = 5 λ = 5 λ = 10
4 2 9 10 10 5
5
6 E3 MEigenVec(B3:C4,C7) MMULT(B3:C4,E7:E8) C7*(E7:E8)
7 λ1 = 5 q1 = 0.894427 S q1 = 4.472136 λ1 q1 = 4.472136
8 -0.447214 -2.236068 -2.236068
9

10 E4 MEigenVec(B3:C4,C11) MMULT(B3:C4,E11:E12) C11*(E11:E12)
11 λ2 = 10 q2 = 0.447214 S q2 = 4.472136 λ2 q2 = 4.472136
12 0.894427 8.944272 8.944272
13
14              MEigenVec(B3:C4,E3:E4)
15 q = 0.894427 0.447214
16 -0.447214 0.894427

Fig. 10.11.1: An annotated spreadsheet of Exercise 10.11.1 for the eigenvalues and eigenvectors of a real Hermitian matrix. 

So far we have glossed over two points. The first is that the eigenvalues are uniquely defined, but the 
corresponding eigenvectors are not, in the sense that multiplication of the vector q by any scalar affects 
the left- and right-hand sides of (10.11.1) in the same way, and therefore keeps that equation intact no 
matter what multiplier we use. It is therefore customary to normalize the eigenvectors by dividing them 
by their Euclidian vector length (or Frobenius norm) q which is the positive square root of the sum of 
squares of the individual vector elements. You can readily verify on the spreadsheet that, e.g., 0.8944272 
+ (–0.447214)2 = 1 in E7:E8. In that way, the eigenvectors are standardized, except for their signs. Ma-
trix.xla(m) has the convenient functions MNorm to compute the matrix or vector norm, and MNormalize 
and MNormalizeC to perform that normalization for you. 
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A B C D E F G H I J
1
2 MEigenValQR(B3:C4) MEigenValQL(B3:C4) MEigenValPow(B3:C4)
3 S = 6 2 λ = 7.5 λ = ? convergence fails
4 -2 9 7.5 ? convergence fails
5
6 E3 MEigenVec(B3:C4,C7) MMULT(B3:C4,E7:E8) C7*(E7:E8)
7 λ1 = 5 q1 = 0 S q1 = 0 λ1 q1 = 0
8 0 0
9

10 E4 MEigenVec(B3:C4,C11) MMULT(B3:C4,E11:E12) C11*(E11:E12)
11 λ2 = 10 q2 = 0 S q2 = 0 λ2 q2 = 0
12 0 0 0
13
14              MEigenVec(B3:C4,E3:E4)
15 q = 0 0
16 0 0

0

     

Fig. 10.11.2: A mere change from 2 to –2 in cell B4 yields an output full of warning 
signs, such as question marks in H3:H4, error messages in J3:J4, and zeroes in many de-
rived results. Clearly, the software commands used are inadequate for a complex output.   

The second point is that the eigenvalues and/or eigenvectors of a square matrix with real elements can 
be complex, just as the roots of a quadratic equation with real coefficients can be. We did not have to 
worry about that in exercise 10.11.1 because we used a Hermitian matrix S. But as Fig. 10.11.2 illustrates, 
as soon as we deviate from a Hermitian matrix, we run the risk of a nonsensical answer when we don’t 
anticipate a complex result.  

 

In general, therefore, we need instructions that can handle complex eigenanalysis, such as MEigen-
ValQRC and MEigenVecC. In this book we will use the default (split) complex format, which assigns 
separate blocks to the real and imaginary components of S and q as illustrated in Fig. 10.11.2. For added 
clarity we have used a thin separator between the real and imaginary components. Alternatively you can 
use two different, light background colors, or two different shades of gray. Exercise 10.11.2 will use the 
equivalent spreadsheet for general, complex numbers   

A B C D E F G H I
1
2 MEigenValQRC(B3:E4)
3 S = 6 2 0 0 λ 1 = 5 0
4 2 9 0 0 λ 2 = 10 0
5
6 MEigenVecC(B3:E4,G3:H3) MMultC(B3:E4,B7:E8) MMultC(B7:G8,G3:H3)
7 q1 = -2 0 S q1 = -10 0  q1 λ 1 = -10 0
8 1 0 5 0 5
9

10 MEigenVecC(B3:E4,G4:H4) MMultC(B3:E4,B7:E8) MMultC(B11:C12,G4:H4)
11 q2 = 0.5 0 S q2 = 5 0  q2 λ 2 = 5 0
12 1 0 10 0 10 0

0

 
 

(3) Note that λ1 is now no longer a scalar but a vector, so that vector dimensionality requires that λ1 q1 actually be 
computed as q1 λ1., because λ1 is displayed as a 1×2 vector, and the sought product should be 2×1.  

Fig. 10.11.3: A general spreadsheet for finding the eigenfunctions of a 
nonsingular 2×2 matrix, allowing for complex input and output which, 
in this case, is actually not needed since S is real and Hermitian.  

 
Note that we consider S in B3:E4 as a square 2×2 matrix, even though its notation takes twice as much 

spreadsheet space because we display their real and imaginary components in separate cells. Likewise, λ in 
G3:H3 is a 1×1 scalar, whether or not it has a non-zero imaginary component and takes up one or two cells. 

Exercise 10.11.2: 
(1) Open a new spreadsheet, and model it after Fig. 10.11.3, i.e., with the same Hermitian matrix S as used there. You 

need not specify the zeroes in D3:E4; leaving those cells unspecified will be interpreted as zeroes.  
(2) As you will see, the results are the same as those obtained in Fig. 10.11.1, except that MEigenVecC can only deal 

with one eigenvalue at a time, and therefore cannot generate (3)  in a single instruction, as in F15:G16 of Fig. 10.11.1.   
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(4) Change the 2 in cell B4 into –2. It will show you why Fig. 10.11.2 did not work, because both the eigenvalues and 
eigenvectors are now complex. 

(5) Note that the output of MEigenVecC is not normalized, because no single element in a normalized vector can ever 
be outside the range from –1 to +1, whereas there are many numbers exceeding that range in B7:C8 and B11:C12. To 
n

 zeroes, the only value that is equal to its own negative. 

lues of S.  

 

 

 

So far we h me. Often it is 
more efficient to use MEigenVecInvC to make one complex matrix; its underlying routine is also more 
robu

ormalize the eigenvectors you can use the instruction MNormalizeC, as long as you use the block containing both its 
real and imaginary components as its argument.   

(6) Here is the result for a complex Hermitian matrix S, in which case the top and bottom triangle of the imaginary part 
must have opposite signs. Its diagonal can only contain

(7) We see that this complex Hermitian input indeed has real eigenvalues, but its eigenvectors are complex.  
(8) Finally, Fig. 10.11.6 shows the results for a general nonsingular square matrix. Play with it by varying the va

 
A B C D E F G H I

Fig. 10.11.4: The correct result for the problem shown in Fig. 10.11.2.  

2                 MEigenValQRC(B3:E4)
3 S = 6 2 0 0 λ 1 = 7.5 -1.3228757
4 -2 9 0 0 λ 2 = 7.5 1.3228757
5
6               MEigenVecC(B3:E4,G3:H3) MMultC(B3:E4,B7:E8) MMultC(B7:G8,G3:H3)
7 q1 = 1 -1.1338934 S q1 = 6 -9.827076  q1 λ 1 = 6 -9.827076
8 0 -1.5118579 -2 -11.33893 -2 -11.33893
9

10               MEigenVecC(B3:E4,G4:H4) MMultC(B3:E4,B7:E8) MMultC(B11:C12,G4:H4)
11 q2 = 1 1.1338934 S q2 = 6 9.827076  q2 λ 2 = 6 9.827076
12 0 1.5118579 -2 11.33893 -2 11.33893

1

Fig. 10.11.5: A complex Hermitian matrix has real eigenvalues but complex eigenvectors.  

2 MEigenValQRC(B3:E4)
3 S = 6 2 0 1 λ 1 = 4.807418 0
4 2 9 -1 0 λ 2 = 10.19258 0
5
6 MEigenVecC(B3:E4,G3:H3) MMultC(B3:E4,B7:E8) MMultC(B7:G8,G3:H3)
7 q1 = 1 -2 S q1 = 4.807418 -9.614835  q1 λ 1 = 4.8074176 -9.614835
8 0 1.1925824 0 5.733242 0 5.733242
9

10 MEigenVecC(B3:E4,G4:H4) MMultC(B3:E4,B7:E8) MMultC(B11:C12,G4:H4)
11 q2 = 1 -2 S q2 = 10.19258 -20.38516  q2 λ 2 = 10.192582 -20.38516
12 0 -4.1925824 0 -42.73324 0 -42.73324

A H I
1

B C D E F G

 
ave used the instruction MEigenVecC which handles one eigenvector at a ti

st, and it yields normalized eigenvectors where, for complex vectors, normalization of course in-
cludes both the real and imaginary components. The self-annotated Fig. 10.11.7 therefore shows how 
such an analysis is most efficiently achieved, using a minimum of instructions and spreadsheet real estate. 
Eigenfunction analysis can hardly be simpler. 
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A B C D E F G H I
21
22              MEigenValQRC(B23:E24)
23 S = 6 2 5 7 λ 1 = 3.781991 6.6016573
24 -3 9 -1 0 λ 2 = 11.21801 -1.6016573
25
26        MEigenVecC(B23:E24,G23:H23)               MMultC(B23:E24,B27:C28) MMultC(B27:G28,G23:H23)
27 q1 = 1 0.36176 S q1 = 1.39376 7.96984  q1 λ 1 = 1.39376 7.96984
28 0 0.399633 -2.638238 1.51141 -2.6382377 1.51141
29
30        MEigenVecC(B23:E24,G24:H24)               MMultC(B23:E24,B31:C32) MMultC(B31:C32,G24:H24)
31 q2 = 1 0.719405 S q2 = 12.37025 6.468639  q2 λ 2 = 12.37025 6.468639
32 0 -1.423897 -2.280595 -15.97329 -2.2805946 -15.97329

A B C D E F G H I
21
22              MEigenValQRC(B23:E24)
23 S = 6 2 5 7 λ 1 = 3.781991 6.6016573
24 -3 9 -1 0 λ 2 = 11.21801 -1.6016573
25
26        MEigenVecC(B23:E24,G23:H23)               MMultC(B23:E24,B27:C28) MMultC(B27:G28,G23:H23)
27 q1 = 1 0.36176 S q1 = 1.39376 7.96984  q1 λ 1 = 1.39376 7.96984
28 0 0.399633 -2.638238 1.51141 -2.6382377 1.51141
29
30        MEigenVecC(B23:E24,G24:H24)               MMultC(B23:E24,B31:C32) MMultC(B31:C32,G24:H24)
31 q2 = 1 0.719405 S q2 = 12.37025 6.468639  q2 λ 2 = 12.37025 6.468639
32 0 -1.423897 -2.280595 -15.97329 -2.2805946 -15.97329

Fig. 10.11.6: An annotated spreadsheet of Exercise 10.11.2 for the eigenfunction analysis of a general complex matrix.  

A B C D E F G H I
1
2
3 S = 4 2 4 5 3 -4 5 7
4 1 2 1 2 2 0 13 -1
5 -2 4 -2 2 4 2 2 6
6 3 -3 3 1 -3 -3 11 -3
7
8 MEigenvalQRC(B3:I6)
9 λ1 = -4.742506 -10.70001

10 λ2 = 0 1
11 λ3 = 4.836931 2.04102
12 λ4 = 4.905575 9.658987
13
14 MEigenVecInvC(B3:I6,B9:C12)
15 Q = -0.102320 0.707107 0.730422 -0.438015 -0.178527 0 0 -0.200275
16 -0.138442 0 -0.499653 0.001996 0.493799 -0.707107 -0.011032 -0.696918
17 -0.183668 0 -0.139464 -0.009612 -0.408504 0 0.113374 -0.510347
18 0.067940 0 -0.042364 0.118771 0.699593 0 -0.427328 -0.087645

 
Fig. 10.11.7: An annotated spreadsheet for the eigenfunction analysis of a general complex matrix.  

10.12  Eigenvalue decomposition (AE3 pp. 495-497) 
Now that we now know how to find the eigenvalues λ and eigenvectors q of S, we can ask whether 

we can travel this route in reverse, and compute S from its eigenvalues and eigenvalues. The answer is 
yes, and is in fact simple to derive as well as to implement. In general, an m×m matrix will have m eigen-
values λ (which, just like the roots of a higher-order polynomial, need not all be distinct), and each eigen-
value λ i will have an associated eigenvector q i. Place the eigenvalues λ i on the diagonal of a diagonal ma-
trix Λ, so that all off-diagonal elements are zero. Then arrange all eigenvectors q i in a matrix Q, by plac-
ing them one next to the other in the same order as that of the corresponding eigenvalues λ i in Λ, i.e., in 
our chosen format for complex notation, grouping the real components first and then, separately, the 
imaginary ones. We then have S q = q λ. (Mathematically, it doesn’t matter whether we write λ q or q λ, 
because both merely mean that each element of q is multiplied by the scalar λ . But on the spreadsheet we 
treat vectors as either column or row vectors, and if we elect to write q as a column vector, as in Fig. 
10.12.1, we obviously must use qr×1 times λ1×1 in order to make their inner indices equal, as necessary for 
matrix multiplication, see section 10.1.3.) Application of the rules of matrix multiplication will then 
quickly convince you that we can condense the n equations S q = q λ and into the single matrix equation 

S Q = Q Λ (10.12.1)  

 78



so that we can reconstruct S simply as  
S = S Q Q–1  = Q Λ Q–1 (10.12.2)  

as will be illustrated in the next two exercises. Alternatively, we can consider (10.12.2) as a way to de-
compose any nonsingular square matrix S into the product of three separate matrices of the same size 
m×m as S. The middle matrix of this trio, Λ, is diagonal and contains only the eigenvalues of S, while its 
two neighbors derive from the corresponding eigenvectors. We will illustrate these relationships in exer-
cise 10.12.1 for a square matrix (which need not be Hermitian) with real eigenfunctions, and in exercise 
10.12.2 for a general square matrix. 

Exercise 10.12.1: 
(1) On a new spreadsheet enter a square matrix S such as shown in B3:D5 of Fig. 10.12.1, which was carefully selected 

to have only real eigenvalues and eigenvectors to keep the spreadsheet simple.  
(2) Verify that it has only real eigenvalues by filling the block E3:G5 with zeroes, and in block I3:J5 use 

=MEigenValQRC(B3:G5) to find the corresponding eigenvalues. With both S and the λ’s real, the q’s must also be 
real, but you need not take my word for it: test it yourself. As you can see from Fig. 10.12.1, this is indeed the case.  

 

A B C D E F G H I J
1
2 MEigenValQRC(B3:G5)
3 S = -1 6 7 0 0 0 -7.834209 0
4 2 2 8 0 0 0 -3.924174 0
5 5 4 -3 0 0 0 9.758383 0
6
7 MEigenVecC(B3:G5,I3:J3)               MEigenVecC(B3:G5,I4:J4) MEigenVecC(B3:G5,I5:J5)
8 -0.377465 0 1.226825 0 1.431538 0
9 -0.736721 0 -1.764575 0 1.400173 0

10 1.000000 0 1.000000 0 1.000000 0

Fig. 10.12.1: Verifying that the square matrix S has real eigenvalues and real eigenfunctions. 
 
(3) On a new spreadsheet, copy the real part of S in B2:D4, find its eigenvalues in F3:F5, and all eigenvectors in H3:J5. 
(4) In B8:D10 enter the eigenvalues on its main diagonal, and place zeroes in all off-diagonal positions. (In this case 

you cannot leave them blank.) This will generate Λ.  
 

A B C D E F G H I J
1
2 MEigenValQR(B3:D5) MEigenVec(B3:D5,F3:F5)
3 S = -1 6 7 λ 1 = -7.834209 Q = 0.290767 0.517559 0.639578
4 2 2 8 λ 2 = -3.924174 0.567509 -0.744419 0.625564
5 5 4 -3 λ 3 = 9.758383 -0.770317 0.421869 0.446777
6
7 data from F5:F5 MMULT(H3:H5,F3) MMULT(H3:J5,B8:B10)
8 Λ = -7.834209 0 0 q1 λ 1 = -2.277933 -2.277933
9 0 -3.924174 0 -4.445982 -4.445982

10 0 0 9.758383 6.034823 6.034823
11
12  MMULT(B3:D5,H3:J5) MMULT(I3:I5,F4) MMULT(H3:J5,C8:C10)
13 S Q = -2.277933 -2.030992 6.241245 q2 λ 2 = -2.030992 -2.030992
14 -4.445982 2.921229 6.104497 2.921229 2.921229
15 6.034823 -1.655486 4.359817 -1.655486 -1.655486
16
17    MMULT(H3:J5,MMULT(B8:D10,MINVERSE(H3:J5))) MMULT(J3:J5,F5) MMULT(H3:J5,D8:D10)

18 Q Λ  Q-1
 = -1 6 7 q3 λ 3 = 6.241245 6.241245

19 2 2 8 6.104497 6.104497
20 5 4 -3 4.359817 4.359817

Fig. 10.12.2: Illustrating (10.12.1) and (10.12.2), the reconstruction of a square matrix S from 
its eigenvalues λ i and its eigenvectors qi, for the special case where S, Λ, and Q are all real. 
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(5) In B13:B16 calculate the matrix product S Q. In G8:G10 compute q1 λ1, in I8:I10 the product of Q and the first 
column in L, and compare these two with each other as well as with the first column in S Q. All should be the same. Do 
the same for the second and third eigenvalues and their eigenvectors, and compare with the second and third column of S Q.  

(6) Finally, in B18:D20, construct Q Λ Q–1 and verify that it indeed regenerates S.  In Fig. 10.12.2 this is done with one 
compound instruction (to keep the picture compact) but you may prefer to do this in several simpler steps, e.g., by first 
computing Q Λ and Q–1 separately.   

A B C D E F G H I J
1
2 MEigenValQRC(B3:G5)
3 S = -1 6 7 0 0 0 λ = -8.139768 0
4 2 2 -8 0 0 0 3.069884 -4.533442
5 5 4 -3 0 0 0 3.069884 4.533442
6
7 (MEigenVecC(B3:G5,I3:J3)              MEigenVecC(B3:G5,I4:J4) MEigenVecC(B3:G5,I5:J5)
8 q1 = -1.969985 0 q2 = 0.033746 1.293202 q3 = 0.033746 -1.293202
9 1.177539 0 1 -0.221110 1 0.221110

10 1 0 0 0.919551 0 -0.919551
11
12 from I3:J5
13 Λ = -8.139768 0 0 0 0 0
14 0 3.069884 0 0 -4.533442 0
15 0 0 3.069884 0 0 4.533442
16
17 A8:A10 E8:E10 I8:I10 B8:B10 F8:F10 J8:J10
18 Q = -1.969985 0.033746 0.033746 0 1.293202 -1.293202
19 1.177539 1 1 0 -0.221110 0.221110
20 1 0 0 0 0.9195511 -0.919551
21
22 MMultC(B18:G20,B13:G15)
23 Q Λ = 16.035217 5.966254 5.966254 0 3.816993 -3.816993
24 -9.584892 2.067493 2.067493 0 -5.212225 5.212225
25 -8.139768 4.168732 4.168732 0 2.822915 -2.822915
26
27 MInvC(B18:G20)

28 Q-1 = -0.292041 0.009855 0.413079 -1.08E-17 -2.71E-17 8.67E-18
29 0.207056 0.493013 -0.172644 -0.158795 0.005359 -0.319135
30 0.207056 0.493013 -0.172644 0.158795 -0.005359 0.319135
31
32 MMultC(E23:J25,B28:G30)

33 Q Λ Q-1 = -1 6 7 0 0 0
34 2 2 -8 0 0 0
35 5 4 -3 0 0 0
 

Fig. 10.12.3: Illustrating (10.12.1) and (10.12.2), the reconstruction of a square matrix S from its eigenval-
ues λ i and its eigenvectors qi for the general case where S, Λ, and Q are all potentially complex quantities. 

In the above example we made sure that S only had real eigenvalues and real eigenvectors, but in gen-
eral that will not be the case. Just play with the numbers in Fig. 10.12.1 and you will realize that this is 
the exception rather than the rule. Merely changing the sign of one of its elements generates a complex 
response for 7 of the 9 numbers in B2:D4. Here we will just change the 8 in D3 to –8, while keeping 
E2:G4 empty (or filled with zeroes). Of course, when S itself already contains imaginary components, 
some or all of the eigenvalues and/or eigenvectors must be complex.   

Exercise 10.12.2: 
(1) On a new spreadsheet enter a square matrix S such as shown in B3:D5 of Fig. 10.12.3.  
(2) In I3:J5 use =MEigenValQRC(B3:G5) to find the corresponding eigenvalues.  
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(3) For each of the eigenvalues λi find the corresponding eigenvector qi in C8:D10, F8:G10, and I8:J10.  
(4) Construct the matrix Λ from two adjacent zero matrices, one using the real components I3:I5 of λ, and the other its 

imaginary components from J3:J5.  
(5) Likewise, in B13:G15, stitch together the matrix Q from its individual pieces in rows 8:10.  
(6) Compute the matrix product Q A in E23:J25, and the inverse Q–1 of Q in B28:G30.   
(7) Finally calculate Q Λ Q–1 in E33:J35, which should reconstruct S from its eigenvalues and eigenvectors. Your 

spreadsheet should now resemble Fig. 10.12.3 

Now play with this spreadsheet, by changing the values in B3:D5, and by inserting non-zero numbers 
into E2:G4, and see what happens. If your spreadsheet is built correctly, it will automatically reproduce 
its input S in its output Q Λ Q–1. That, of course, is the point of this exercise. 

A final note: the eigenvectors in rows 8:10 are not normalized. However, do not try to normalize them, 
as the above check will not work. Normalization seems not to work properly with some of the complex 
number operations of Matrix.xla.  

10.13  Singular value decomposition (AE3 pp. 498-501) 
A singular matrix occurs when the simultaneous equations to be solved are not linearly independent. 

We have seen in sections 2.9, 8.14 and 10.10 that such independency is not an all-or-none proposition, 
but instead can exhibit some uncertainty, because round-off errors can make a singular matrix appear to 
be nonsingular.  Near-singular matrices are often called ill-conditioned, and their numerical inversion 
may cause problems due to the finite numberlength used in floating-point calculations.  

One possible remedy would be to use a longer numberlength, an option we will consider in chapter 11. 
There is, however, a powerful matrix method that can reduce some of the problems involving ill-
conditioned matrices, even while remaining in the usual “double precision” mode. We will briefly de-
scribe this method, called singular value decomposition (SVD), which is based on the decomposition of 
any rectangular matrix R into three matrices, just as eigenvalue decomposition does for square matrices. 
This method constitutes a useful generalization of eigenvalue decomposition, because it applies to all rec-
tangular matrices, including those that are square, and even to those that are both square and singular.  

In the compact notation used by Matrix.xla(m) as well as the Numerical Recipes, singular value de-
composition of a rectangular real matrix R of size m×n where m ≥ n yields 

 R = U Σ VT  (10.13.1) 
where U is an m×n orthogonal matrix (not an upper triangular one, as traditionally indicated by the same 
symbol), and Σ and V are square matrices of size n×n. We may compare (10.13.1) with the somewhat 
simpler (10.12.2) for a square matrix. The corresponding pseudo-inverse R+ of R is 

 R+ = (U Σ VT)–1 = V Σ –1 UT  (10.13.2) 
because   
 R+ R = V Σ –1 UT  U Σ VT  = V Σ –1 (UT  U) Σ VT  = V (Σ –1 Σ) VT  = V VT  = I     (10.13.3) 
where we have used the properties that U and UT as well as V and VT are orthogonal, i.e., UT  U = V  VT = 
I. (In general, however, U  UT ≠ I. and UT  U ≠ I.) Because Σ is diagonal, with diagonal elements σi and 
off-diagonal zeroes, its inverse Σ–1 is found directly by replacing all non-zero terms σi by 1/σi. 

Several special properties of singular value decomposition are: 
(1) Singular value decomposition is possible for both square and rectangular matrices, and for both 

singular and non-singular matrices.  
(2) The diagonal elements σ i of Σ are called the singular values of R. These singular values are all 

non-negative, and are usually presented in order of decreasing magnitude: σ 1 ≥ σ 2 ≥ σ 3 ≥ … ≥ σ r
 ≥ 0, 

where the index r denotes the rank of R, i.e., the number of columns in R that are not completely linearly 
dependent on one or more of the other columns. 

(3) For a Hermitian matrix (i.e., either a symmetrical real square matrix for which R = RT, or a com-
plex square matrix for which R = RH, its conjugate, Hermitian transpose) the singular values are the 
square roots of the absolute values of its eigenvalues, i.e., σ i

2 = λ . 
(4) The ratio of the largest to smallest singular value yields the condition number κ = σ 1/σ r ≥ 1. Sin-

gular value decomposition therefore provides a direct way to characterize a matrix in terms of its robust-
ness against the effects of numerical errors. If the matrix R is singular, κ should go to infinity, but since 
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the spreadsheet cannot represent infinity, κ either becomes a very large number or shows a divide-by-zero 
error message. If R is near-singular, the condition number κ is very much larger than 1. In all such cases, 
the quantity pκ (pronounced as “pee-kappa”) = –log(κ) provides an estimate (in terms of decimal places) 
of the maximum loss of precision in inverting a matrix, in terms of number of decimals. The correspond-
ing decimal places are not lost, but their significance usually is. In exercise 10.10.1 we already encoun-
tered an example of an ill-conditioned matrix which, as you will see shortly, has a pκ of about –6, i.e., its 
last six decimals become statistically insignificant, because inverting that matrix can amplify the noise-to-
signal ratio by a factor of the order of κ or, in the above example, about a million-fold.   

Exercise 10.13.1 illustrates the following basic properties of singular value decomposition:  
(1) Any rectangular matrix R can be written as U Σ VT. 
(2) The singular values on the diagonal of Σ are the positive square roots of the non-zero eigenvalues of 

RT R or R RT.  
(3) The columns of U are the eigenvectors of R RT. 
(4) The columns of V are the eigenvectors of RT R.  

These properties establish SVD as the most useful generalization to rectangular matrices of the eigen-
analysis of square matrices. This is why singular value decomposition plays such a central role in applied 
matrix algebra.  

Exercise 10.13.1: 
(1) On a new spreadsheet place a small non-singular, non-square matrix R in B3:C5  
(2) In E3:G4 place its transpose, RT.  
(3) In B8:C10, F8:G9, and I9:J10 compute the SVD matrices U, Σ, and V respectively. Note that Matrix.xla uses the 

symbol D for the diagonal matrix we here call Σ containing the singular values σi in order to distinguish it from the di-
agonal matrix Λ containing the eigenfunctions λ i. 

(4) In J3 use =MpCond(B3:C5) to find pκ, the negative logarithm of the condition number κ, and in J6 verify that κ 
is the ratio of the largest to smallest singular value.   

(5) In B13:D15 calculate the matrix product R RT, which you can readily verify is a symmetrical square matrix. 
(6) In F13:F15 find the three eigenvalues of the square matrix R RT. You need not consider complex eigenvalues, be-

cause R RT is a symmetrical square matrix, and is therefore Hermitian.  
(7) In B18:C19 calculate the matrix product RT R, in E18:E19 its eigenvalues, and in G18:G19 their square root. (Here 

the eigenvalues are all positive. If not, compute the square roots of their absolute values.) Verify that the eigenvalues (in 
F14:F15 and E18:E19 respectively) and F14:F15 are the same.  

(8) Verify that the non-zero eigenvalues of R RT and RT R in F14:F15 and E18:E19 respectively are the same, as they 
should be. This therefore also applies to their square roots. Verify that the latter are indeed the same as the significant 
values on the main diagonal of Σ in F8:G9. This illustrates point (2) just above this exercise.  

(9) In I13:J15 compute the eigenvectors of R RT, again using only the non-zero eigenvalues in F14:F15, and compare 
these eigenvectors with the columns of U in B8:C10. This illustrates point (3) given above his exercise. The signs of en-
tire columns may differ, because normalized vectors still have an inherent sign ambiguity.  

(10) Likewise, in I18:J19 find the eigenvectors of RT R, which should be the same (but for their signs) as those in 
I9:J10 for V, and thereby illustrate point (4).  

(11) In B22:C24 calculate the product U Σ, and in F22:G24 U Σ VT. This should reconstitute R, as it indeed does, see 
point (1) above.  

Note the ease of getting these results on the spreadsheet. Moreover, once you have made the spread-
sheet, you can change one or more elements of R and immediately see how such changes affect the an-
swers. You need to make a new spreadsheet only when the size of R changes. 

Use the just-made spreadsheet to see what happens in Fig. 10.13.1 when you make the two columns 
in R linearly dependent, e.g., by putting 3, 5, 7 in C3:C5 so that the second column is twice the first + 1 
(which in matrix parlance does not count as “fully linearly dependent” because of the additive constant 1) 
or 3, 6, and 9 (which does count as such because the second column is now a multiple of the first). In the 
latter case, there is only one nonzero singular value in Σ, and only one nonzero eigenfunction in F15 or 
E19, and the condition number exceeds 16, yet R is still properly reproduced in F22:G24 by U Σ VT.  

The compact notation omits singular values that are zero, and the corresponding rows and columns in 
Σ, U and V. Figure 10.13.2 shows what the corresponding “full” SVD would look like. It makes both U 
and V square, while Σ assumes the size of R. (We will use U^ and Σ^ to distinguish them from their com-
pact values U and Σ.) When R is m×n, U^ will have the size m×m, and Σ^ m×n. For a typical least squares 
problem, where there are often many more data (m) than variables (n–1), the difference in space require-
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ments can be significant, while the final results are identical. Both UT U = I and (U^)T U^ = I apply, but in 
general U UT ≠ I and U^ (U^)T ≠ I. 

A B C D E F G H I J
1
2 MT(B3:C5) MpCond(B3:C5)

3 R = 1 0 RT = 1 2 3 pκ  = -0.40
4 2 -5 0 -5 7
5 3 7 -LOG
6 -0.40
7 SVDU(B3:C5) + zeroes SVDD(B3:C5) + zeroes

8 U^ = -0.020059 0.283676 0 Σ^ = 8.715107 0 SVDV(B3:C5)
9 0.524763 0.819190 0 0 3.470866 V = -0.174819 0.984601

10 -0.851012 0.498454 0 0 0 -0.984601 -0.174819
11
12 MMULT(B3:C5,E3:G4) MEigenValQR(B13:D15)     MEigenVec(B13:D15,F13:F15)

13 R RT = 1 2 3 λ = 0 QR RT = 0.958710 0.283676 0.020059
14 2 29 -29 12.046909 -0.231413 0.819190 -0.524763
15 3 -29 58 75.953091 -0.165295 0.498454 0.851012
16
17 MMULT(E3:G4,B3:C5) MEigenValQR(B18:C19) SQRT(E18:E19)    MEigenVec(B18:C19,E18:E19)

18 RT R = 14 11 λ = 12.04691 3.4708658 QRT R  = 0.9846005 0.174819
19 11 74 75.95309 8.715107 -0.174819 0.984601
20
21 MMULT(B8:D10,F8:G10) MMULT(B22:C24,MT(I9:J10))

22 U^ Σ^ = -0.174819 0.984601 U^ Σ^ VT= 1 8.049E-16
23 4.573364 2.843298 2 -5
24 -7.416662 1.730065 3 7

(F8/G9)

 
 

 

 

Fig. 10.13.1: A spreadsheet illustrating some properties of the singular value decomposition of a rectangular matrix R.  

The above rules establishing the relation between the SVD of rectangular matrices (including square 
and/or singular ones) and the eigenanalysis of non-singular square matrices are readily generalized to 
complex matrices by replacing the transpose RT by the conjugate (Hermitian) transpose RH. In this more 
general form, applicable to both real and complex matrices, these rules therefore are:  

     (1) Any rectangular matrix R can be written as U Σ VT. 
(2) The singular values on the diagonal of Σ are the positive square roots of the non-zero eigenvalues of  

              RH R or R RH.  
(3) The columns of U are the eigenvectors of RH R.  
(4) The columns of V are the eigenvectors of R  RH. 
Here is a simple demonstration of rule (2) in the above list. We start from a real rectangular matrix R, 

and form the square product RT R, which is Hermitian. We now apply singular value decomposition to RT 
and R, and combine these to  

 RT R = (U Σ VT) T (U Σ VT) = (V Σ T UT) (U Σ VT)  
           = V Σ T (UT U) Σ VT = V Σ T Σ VT = V Σ 2 VT (10.13.3) 

where we have used the rule of matrix transposition that (A B)T = BT AT and hence (A B C)T = CT BT AT, 
together with the facts that UT U = I because the columns of U contain orthogonal eigenvectors, and that 
Σ is diagonal, so that Σ T = Σ and Σ T Σ = Σ 2. An equivalent derivation applies to complex matrices, with 
the superscript T (for transposition) replaced by H (for Hermitean transposition). 
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A B C D E F G H I J
1
2 MT(B3:C5) MpCond(B3:C5)

3 R = 1 0 RT = 1 2 3 pκ  = -0.40
4 2 -5 0 -5 7
5 3 7 -LOG
6 -0.40
7 SVDU(B3:C5) + zeroes SVDD(B3:C5) + zeroes

8 U^ = -0.020059 0.283676 0 Σ^ = 8.715107 0 SVDV(B3:C5)
9 0.524763 0.819190 0 0 3.470866 V = -0.174819 0.984601

10 -0.851012 0.498454 0 0 0 -0.984601 -0.174819
11
12 MMULT(B3:C5,E3:G4) MEigenValQR(B13:D15)     MEigenVec(B13:D15,F13:F15)

13 R RT = 1 2 3 λ = 0 QR RT = 0.958710 0.283676 0.020059
14 2 29 -29 12.046909 -0.231413 0.819190 -0.524763
15 3 -29 58 75.953091 -0.165295 0.498454 0.851012
16
17 MMULT(E3:G4,B3:C5) MEigenValQR(B18:C19) SQRT(E18:E19)    MEigenVec(B18:C19,E18:E19)

18 RT R = 14 11 λ = 12.04691 3.4708658 QRT R  = 0.9846005 0.174819
19 11 74 75.95309 8.715107 -0.174819 0.984601
20
21 MMULT(B8:D10,F8:G10) MMULT(B22:C24,MT(I9:J10))

22 U^ Σ^ = -0.174819 0.984601 U^ Σ^ VT= 1 8.049E-16
23 4.573364 2.843298 2 -5
24 -7.416662 1.730065 3 7

(F8/G9)

Fig. 10.13.2: The corresponding spreadsheet using the full format of the sin-
gular value decomposition. The added zeroes are printed in bold numbers.  

Comparing (10.13.3) with the eigenvalue decomposition of the square matrix RT R, see (10.12.1), 
yields  

 V Σ 2 VT = QR RT Λ (QR RT)–1  (10.13.4) 

from which we see that Σ is indeed the square root of Λ and, because both Σ and Λ are diagonal, the indi-
vidual singular values σ i are the square roots of the eigenvalues λ i. Moreover, V is the matrix containing 
the eigenvectors of R RT, and VT is its inverse. In general, for a complex rectangular matrix R, replace the 
real transpose by its conjugate counterpart.  

10.14  SVD and linear least squares (AE3 pp. 501-504) 
The benefit of using singular value decomposition for least squares analysis is that it is much less sen-

sitive to ill-conditioning than the traditional approach of section 10.5. Below we will first illustrate the 
use of singular value decomposition in solving least squares problems. 

Exercise 10.14.1: 
(1) We now use the same data set as in exercise 10.5.1, i.e., with the x,y coordinates (1,5), (2,8), (3,11), (4,14), and 

(5,17). These data fit the line y =2 + 3x exactly, and are so close to the origin that there is no need for centering.  
(2) Take a new spreadsheet, and enter the values 5, 8, 11, 14, and 17 of the input data vector y in cells B2:B6, and the 

associated x-values in D2:D6. 
 

(3) In F2:G6 place the matrix Q, with its first column of x0 = 1 (in all five cells F2:F6), and with the x-values 1, 2, 3, 4, 
and 5 as its second column, G2:G6. (If we were forcing the line to pass through the origin, the first column of matrix Q, 
F2:F6, would contain zeros rather than ones.)  

(4) In B9:C13 compute U with the instruction =SVDU(F2:G6). Note that U must have the same size as X, in this case 
5×2. 

(5) In E9:F10 deposit the instruction for Σ, =SVDD(F2:G6), and in H9:E10 likewise compute V.  
(6) In F13:G14 calculate the product V Σ 

–1. 
(7) In B16:F17 compute the SVD pseudo-inverse X+ = V Σ 

–1 UT as the product of V Σ 
–1 UT.  
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(8) Finally, in I16:I17, find a as the product X+ b. Your spreadsheet should now resemble Fig. 10.14.1. The results for 
X+ and a are, of course, the same as those for X+ and a in Fig. 10.5.1, although the steps leading from X to X+ are quite 
different. Figure 10.14.1.shows what, with some annotation, you might see on your monitor screen.  

A B C D E F G H I
1
2 y = 5 x = 1 X = 1 1
3 8 2 1 2
4 11 3 1 3
5 14 4 1 4
6 17 5 1 5
7
8 SVDU(F2:G6) SVDD(F2:G6) SVDU(F2:G6)
9 U = 0.160007 -0.757890 Σ = 7.691213 0 V = 0.266934 -0.963715

10 0.285308 -0.467546 0 0.91937 0.963715 0.266934
11 0.410609 -0.177202
12 0.535909 0.113142 MMULT(H9:I10,MInv(E9:F10))

13 0.661210 0.403486 V Σ-1 = 0.034706 -1.048234
14 0.125301 0.290344
15 MMULT(F13:G14,MT(B9:C13)) MMULT(B16:F17,B2:B6)

16 X+ = 0.8 0.5 0.2 -0.1 -0.4 a = 2
17 -0.2 -0.1 2.78E-17 0.1 0.2 3 

Fig. 10.14.1: A spreadsheet illustrating the individual steps in the so-
lution of a least squares problem using singular value decomposition. 

The above exercise illustrates the principle of SVD-based least squares, but for a problem that doesn’t 
really need it. In exercise 10.14.2 we show another example, written with more compact instructions.  

Exercise 10.14.2: 
(1) Open a new spreadsheet, which we will use for this and the next three exercises. In order to keep the instructions 

compact, we will again specify locations of the various spreadsheet elements, so that they will also correspond to those in 
the accompanying figures, and will therefore be easy to compare. Feel free, however, to use your own layout, rather than 
one driven by the author’s need to make compact figures. The same applies to matrix operations you may want to com-
bine in a single instruction, and to labeling used to keep the spreadsheet readable. The best way to get acquainted with 
matrix operations is to play around with them, and to see what works for you.  

(2) In cells all cells in B3:B9 deposit the values 1, in C3:C9 the x-values 1 (1) 7, and in D3:D9 compute the correspond-
ing values for x2. These are the elements of matrix X in B3:D9. 

(3) In F3:H9 compute U with the matrix instruction =SVDU(B3:D9). 
(4) In B15:D17 calculate Σ with =SVDD(B3:D9), and in B20:D22 find V with =SVDV(B3:D9). 
(5) In F14:H20 recover the matrix X as U Σ VT through =MProd(F3:H9,B15:D17,MT(B20:D22)). Verify that 

you indeed have reconstructed the original matrix X. Using MProd yields more compact and better readable code than 
twice MMULT. 

(6) If you want to make the spreadsheet even smaller, you could of course skip displaying U, S, and V entirely, and 
merely use the megaformula =MProd(SVDU(B3:D9),SVDD(B3:D9),MT(SVDV(B3:D9))), or write a function 
that will do this automatically for you.   

(7) In cell F23 calculate pκ  as the negative ten-based logarithm of the ratio of the larger to the smaller of the singular 
values in Σ, and in H23 compute the same pκ as =MCond(B3:D9).  

(8) In J3:J9 compute y as yi = 4 + 3xi + 2xi
2 using the values of xi and xi

2 in B2:D8. If you want to play with fitting a 
line through the origin, code it in J3 as =4*B3+3*C3+2*D3, and copy this down to J9. 

(9) Just for kicks (because it is not really recommended to use such long, hard-to-read instructions) in J12:J14 compute 
the least-squares solution of the problem X a = y. Notice that you can do this indeed with one line of code, without any 
other input information than X in B3:D9 and y in J3:J9. 

(10) For comparison, in J17:J20 compute a with the traditional formula (10.5.9) as (XT X)–1 XT y. You could use the 
formula =MProd(MInv(MMULT(MT(B3:D9),(B3:D9))),MT(B3:D9),J3:J9); the answers in J13:J15 and 
J17:J20 should of course be the same. Your annotated spreadsheet may now resemble Fig. 10.14.2. Save it for the next 
exercise. 
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A B C D E F G H I J
1
2 SVDU(B3:D9) y i  = 4+3x i +2x i

2

3 X = 1 1 1 U = -0.017026 0.361281 0.794412 y = 9
4 1 2 4 -0.062044 0.478116 0.230802 18
5 1 3 9 -0.135483 0.497914 -0.139430 31
6 1 4 16 -0.237343 0.420673 -0.316284 48
7 1 5 25 -0.367624 0.246395 -0.299761 69
8 1 6 36 -0.526325 -0.024922 -0.089860 94
9 1 7 49 -0.713448 -0.393276 0.313419 123

10
11 MProd(svdV(B3:D9),MInv(svdd(B3:D9)),MT(svdu(B3:D9)),J3:J9)
12 a = 4
13 MProd(F3:H9,B15:D17,MT(B20:D22)) 3

14 SVDD(B3:D9) U Σ VT = 1 1 1 2
15 Σ = 69.36802 0 0 1 2 4
16 0 3.280315 0 1 3 9 traditional formula
17 0 0 0.563888 1 4 16 a = 4
18 1 5 25 3
19 SVDV(B3:D9) 1 6 36 2
20 V = -0.029686 0.483545 0.874816 1 7 49
21 -0.165597 0.860728 -0.481378
22 -0.985747 -0.159157 0.054522 -LOG(B15/D17) MpCond(B3:D9)
23 pκ = -2.09 pκ = -2.09

 

Fig. 10.14.2: A spreadsheet illustrating the individual steps in the solution of a least 
squares problem using both singular value decomposition and the traditional approach. 

The matrices X in exercises 10.14.1 and 10.14.2 are perfectly well behaved, which is also reflected in 
their pκ values: you should be able to get answers correct to 13 or 14 decimals respectively. Now we are 
going to tinker with X, in order to make it increasingly ill-conditioned, and observe what happens. One 
way to do that is to make the third column in X, representing the x2-values, approach the value x+1, in 
which case this column no longer contains linearly independent parameters, because the third column is 
then the algebraic sum of the corresponding values in the first two columns. 

Exercise 10.14.3: 
(1) Leave cell D3 alone, and change the instruction in cell D4 to =B4+C4. Notice that not much changes with pκ in 

H23, and nothing with the coefficients in J12:J14 and J17:J20.  
(2) Copy the instruction from D3 to D4:D8. Still not much change, because y1, the lone holdout in cell D2, does not fit 

the expression x+1, and the pκ in cell H23 certainly does not indicate a very ill-conditioned, near-singular matrix. Of 
course, things would change if we were to insert a 2 in cell D3.  

 

(3) Change the value in D3 from 1 to 1.9, and notice any changes. Then add another nine to make it 1.99, see what 
happens, add another to yield 1.999, etc.  

(4) You should observe that pκ  in F23 and H23 decrease by about 1 each time the difference between y1 and 2 is re-
duced by an order of magnitude by adding another nine. 

(5) Table 10.14.1 lists what happens with the retrieved least squares coefficients in J17:J19 with the traditional ap-
proach, and in J12:J14 with SVD.   
Table 10.14.1 illustrates that singular value decomposition is much more immune to ill-conditioning 

than the traditional matrix inversion approach, and this observation is generally valid. With y1 in cell D3 
equal to 1.999 999 99, pκ = –9.6, and the least squares coefficients a0 through a2 with the traditional 
method are all far off, while those found with SVD are still good to six significant figures. Even when y1 
differs from 2 by only 1×10–12, the values obtained for a0 through a2 are still within 0.2% of their correct 
values, whereas the standard method already exhibits errors of that order of magnitude when the deviation 
of the value in cell D3 from 2 is five orders of magnitude larger! Moreover, as long as y1 differs from 2 by 
only 1×10–14, the smallest possible difference the spreadsheet can display, the coefficients in a remain of 
the correct order of magnitude, whereas those in the last three columns of Table 10.14.1 start to fluctuate 
wildly already when pκ ≈ –8. Section 10.15 will reinforce this message with a further analysis of the 
NIST reference data set Filip.dat. Note that y contains no experimental noise in this exercise, so that we 
only probe the numerical sensitivity to ill-conditioning of the algorithm used.  
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        singular value                    standard 
       decomposition             matrix inversion 
 y1 pκ a0 a1 a2 a0   a1 a2 

 
1   –1.6 4    3 2        4    3 2 
1.9   –2.6 4    3 2        4    3 2 
1.99   –3.6 4    3 2        4    3 2 
1.999   –4.6 4    3 2        4    3 2 
1.999 9   –5.6 4    3 2        3.99998    2.99997 2.00001 
1.999 99   –6.6 4    3 2        3.99548    2.99619 2.00390 
1.999 999   –7.6 4    3 2        3.68331    2.44161 2.24540 
1.999 999 9   –8.6 4    3   2        7.66292    10.02230 3.11833 
1.999 999 99   –9.6 4    3  2                          6.10507    8.33944     –0.60507 
1.999 999 999 –10.6 3.99999 2.99999   2.00001        6.54691    3.93753     –1.45316 
1.999 999 999 9 –11.6 3.99997 3.00002   2        5.64844    8.51563 0.65625 
1.999 999 999 99 –12.6 4.00024 3   1.99976      –7.62500    8.87500          7.18750 
1.999 999 999 999 –13.6 4.00195 3.00391   2.00195        3.14063     1.17188          3.67187 
1.999 999 999 999 9 –14.6 4.07813 3.10938   1.90625        1.43750     5.35937 2.30469  
1.999 999 999 999 99 –15.6 4.50000 3.25000   1.5          9.02344  10.21094     –2.45688  
2  –16.6      12 5 –3       #NUM!     #NUM! #NUM! 

Table 10.14.1: The results obtained, to within ±0.00001, with the spreadsheets built in exercises 10.11.3 through 
10.11.5 when yi for i = 2 through 7 (in D3:D8) is redefined as yi = 1+xi, while the value of y1 (in D2) gradually 
approaches the value 2 that would make X singular. The penultimate value for y1 contains 15 decimals, i.e., 14 
behind the decimal point; Excel truncates after 15 decimals and therefore either ignores the last-added 9 or reads 
1. followed by more than 14 nines as 2. Values for a0 through a2 that end in .00000 are shown as integers. 

 
 

 

Table 10.14.1 illustrates that singular value decomposition is much more immune to ill-conditioning 
than the traditional matrix inversion approach, and this observation is generally valid. With y1 in cell D3 
equal to 1.999 999 99, pκ = –9.6, and the least squares coefficients a0 through a2 with the traditional 
method are all far off, while those found with SVD are still good to six significant figures. Even when y1 
differs from 2 by only 1×10–12, the values obtained for a0 through a2 are still within 0.2% of their correct 
values, whereas the standard method already exhibits errors of that order of magnitude when the deviation 
of the value in cell D3 from 2 is five orders of magnitude larger! Moreover, as long as y1 differs from 2 by 
only 1×10–14, the smallest possible difference the spreadsheet can display, the coefficients in a remain of 
the correct order of magnitude, whereas those in the last three columns of Table 10.14.1 start to fluctuate 
wildly already when pκ ≈ –8. Section 10.15 will reinforce this message with a further analysis of the 
NIST reference data set Filip.dat. Note that y contains no experimental noise in this exercise, so that we 
only probe the numerical sensitivity to ill-conditioning of the algorithm used.  

The approach sketched here is mathematically sound, but computationally dangerous, because a near-
singular matrix R will have a large spread of singular values σ i. In that case the smaller singular values 
σ i in Σ, which percentage-wise are most strongly affected by round-off errors and data uncertainty, will 
become the dominant terms 1/σ i in Σ–1. That is a prescription for obtaining nonsense, and computation-
ally stable algorithms for R+ therefore avoid formally inverting Σ by replacing all its singular values σ i by 
their inverses, 1/σ i. 

10.20  Summary (AE3 pp. 522-523) 
In principle, a spreadsheet is a near-ideal platform for one- and two-dimensional matrix operations, 

and the increase in spreadsheet area in Excel 2007, especially its widening from 256 to 16K columns, 
promises to make it even more suitable for this purpose, although many operations on large matrices will 
be too slow on the spreadsheet except for occasional use. Unfortunately, Microsoft provides only a mea-
ger set of matrix operations, which it has not updated since its market introduction in 1985, now more 
than a quarter of a century ago. The resulting void was filled admirably by Volpi’s wide selection of addi-
tional matrix functions and macros. Readers with a need for matrix operations will find many more ex-
amples in the associated, quite extensive yet down-to-earth documentation accompanying these 
downloads: the Tutorial of Numerical Analysis for Matrix.xla, and the Reference Guide for Matrix.xla. 
We have especially emphasized least squares applications, as well as those involving eigenfunctions and 
their generalization in terms of singular value decomposition. The exercises in the latter areas can also 
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provide practice in handling complex numbers, vectors, and matrices on the spreadsheet. Linear algebra is 
used increasingly in solving all kinds of practical problems, and Volpi’s add-ins are bound to facilitate a 
greater use of Excel in science, engineering, and statistics. The advantages of the spreadsheet in its wide-
spread distribution, direct visual display, and ease of learning, must of course be balanced against the 
higher computational speed and larger choice of functions of dedicated programs such as Matlab.  

Matrix operations are the heart and soul of linear algebra. But this term should not be taken to imply 
that all matrix operations are linear. Matrix inversion, e.g., is nonlinear in the same sense that the value of 
the algebraic inverse 1/x is not directly proportional to the value of the number x. Moreover, as we saw in 
section 10.10, mutual dependencies between variables (as expressed in their covariances vij and associated 
linear correlation coefficients rij, or in the ill-conditioning of one or more matrices) can lead to wild fluc-
tuations and to seeming “outliers”, as the result of the rather minuscule “noise” from computer round-off 
errors in floating-point arithmetic. In that sense they are somewhat similar to natural phenomena, such as 
the movements of tectonic plates, which are usually smooth but now and then lead to violent “catastro-
phes” such as earthquakes, tsunamis, and volcanic eruptions, events that we know from past experience to 
occur occasionally, but for which the statistics are too sporadic to allow for predictions with much accu-
racy in either space or time.   

 There are of course many systems that have multiple, mutually more or less strongly dependent vari-
ables: the movement of tectonic plates is an example from nature, but the economy is clearly a man-made 
one. Models for such systems are invariably based on past experience, and since catastrophes occur only 
occasionally and follow poorly understood statistics, they are hard to model and consequently are often 
left out. One should therefore be highly skeptical of systems of equations representing moderately under-
stood phenomena, and the more so the more complicated these phenomena are, regardless of the sophisti-
cation of the matrix algebra used. If you consider the disappointing retrospective power of chemical 
analysis of single chemical species under carefully controlled conditions, as illustrated in section 4.26, 
what might a similar, critical test of the predictive power of large-scale economics look like?  

It is tempting to put the above observations in a more general context. Much of our economy nowadays 
relies on econometric models, and we have recently learned, at a great cost to society, what can happen 
when those models are inadequate. As Gerd Gigerenzer, author of “Calculated Risk” (Simon & Schuster 
2003), likes to say, such models typically do well at representing the past (with which they have been 
calibrated), but have problems predicting the future, because they do not incorporate unforeseen events.  

Some of the financial catastrophes have been defended as unforeseeable, “ten sigma” outliers, but that 
is the typical language of combining mutually independent Gaussian distributions. Econometric models 
will often be based on many simultaneous, empirical equations, and will use these to generate a predic-
tion. But even assuming that the input data are accurate (which empirical data seldom are), that the mod-
els are also correct (how can we know?), and that they were indeed valid “predictors” of the past at the 
time they were made, over time laws will be amended, rule enforcement may become lax, circumstances 
change, and so will the coefficients in those equations. Insofar as such changes affect the coefficients of 
near-singular matrices, they will occasionally lead to otherwise quite unexpected results. Earthquakes do 
happen, as do tsunamis and volcanic eruptions. And so do stock market crashes and other man-made dis-
asters. The problem doesn’t seem to lie so much in assuming a particular distribution of unavoidable fluc-
tuations, as suggested by N. N. Talib in his “Black Swan” (Random House 2007), but in the profoundly 
nonlinear behavior of near-singular matrices, as easily hidden in large-scale econometric models. Such 
near-singularities reflect strongly correlated phenomena, of which stock market evaluations are a prime 
example, since they are affected both by hard data and by herd (“bull” or “bear”) psychology. Unless we 
deal with systems that are inherently stable, the possibility that they can become instable cannot be dis-
counted. And unless we realize the uncertainty and collinearity of our input data and assumptions, the 
combination of oversimplified computer models, wishful thinking and/or greed and hubris of some will 
again get all of us into trouble.  

There is yet another factor to consider. While outliers are by definition rare events, their risk is the 
product of their low probability times their potential consequences. Rejecting outliers just because their 
probability of occurrence is low, regardless of the risk involved, is irresponsible, just as it would be to 
abolish the building codes in San Francisco because earthquakes there don’t occur very frequently.  
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11.8 The error function (AE3 pp. 536-537) 
The error function   
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is another example of sloppy Excel programming. The error function is basic to both engineering and sta-
tistics, and appears in many problems of heat and mass transport that describe ‘random walk’ processes, 
such as heat conduction and molecular diffusion. As its name indicates, the error function is also related 
to the cumulative Gaussian (‘normal’) error distribution curve 
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with mean µ and standard deviation σ.  
Excel’s error function takes two forms, one following the common definition (11.8.1), the other the 

rather unusual, two-parameter form  
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which we will not consider here, but which exhibits the same problem.  
For negative values of x, we have the simple symmetry relation 
 erf(–x) = – erf(x) (11.8.4) 

while for positive values of x there is a straightforward, non-alternating power series 

 ∑
∞

=

+
−

+⋅⋅⋅
=

0

12

)12(31
22)(erf

2

n

nn
x

n
xex

Kπ
 (11.8.5) 

For x > 6, we have erf(x) = 1 to at least 15 figures, so that the function need not be computed. A VBA 
code reflecting these properties is shown below. Figure 11.8.1 shows the errors of the Excel function 
Erf(x) and of our cErf(x), and speaks for itself. Again, the results were checked against the same function 
computed with much longer numberlength. As with ASINH(), Excel 2010 has a corrected version for the 
error function. Even prodding a giant can sometimes work.   
Function cErf(X) 
 

' Based on Abramowitz & Stegun eq.(7.1.6) 
 

Dim n As Integer 
Dim Factor, Term, Y 
 

If X < -6 Then 
  Y = -1 
  GoTo A 
ElseIf X > 6 Then 
  Y = 1 
  GoTo A 
ElseIf Abs(X) < 1E-8 Then 
  Y = 2 * X / Sqr([Pi()]) 
  GoTo A 
Else 
  Term = X * Exp(-X * X) 
  Y = Term 
  n = 1 
  Do 
    Factor = 2 * X * X / (2 * n + 1) 
    Term = Term * Factor 
    Y = Y + Term 
    n = n + 1 
  Loop Until Abs(Term / Y) < 1E-50 
  Y = 2 * Y / Sqr([Pi()]) 
End If 
 

A: 
cErf = Y 
 

End Function 
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Fig. 11.8.1: Error plots of Erf(x) (black) and its corrected version cErf(x) (gray). For x < 0, Erf(x) gives no result, for 0 
< x δ 10–2 it is good to only 10 decimal figures (apparently because of an error in the value of 2/√π used), around x = 
0.707 its accuracy dips to pE = 6.3, and for x > 1.57×10162 it again fails to give a result. Moreover, as shown here, the 
curve of Erf(x) vs. x shows a number of spurious discontinuities. By contrast, the function cErf is smooth and accurate 
to at least 14 significant decimal digits over the entire range of possible input values, 2. 2×10–308 ≤ |x| ≤ 1.8×10308.  

11.9  Double precision add-in functions and macros  (AE3 pp. 537-542) 
Almost as a casual byproduct of his extended-precision XNumbers software, Leonardo Volpi gener-

ated a set of double-precision functions that were more accurate than their Excel equivalents, and also 
created many new functions not provided by Microsoft. John Beyers further added to these, making XN a 
quite large collection of useful functions that greatly extends the Excel toolkit. Of course, the extended 
precision functions listed in Table 11.11.1 and in appendix D can also yield double-precision answers 
when DgtMax is specified as 16, but it is better to use a larger value for DgtMax (such as 28 or 35) and to 
convert the results back to double precision with xCDbl. 

Table 11.9.1 is a categorized listing of a number of double-precision functions that are accessible in 
this way, with a brief description, and Table 11.9.2 lists the double-precision macros available by clicking 
on the Macro button of the XN toolbar. For details on their operation, often with worked-out examples, 
see the XN manual, which you can access from Excel by pressing the Help button on the XN toolbar. If 
your monitor screen is wide enough to display the essential part of your spreadsheet and the help file side-
by-side, without overlap, you can work in the spreadsheet while the help file shows. Many XN double-
precision functions for operating with complex numbers were already listed in table 9.7.1, and are there-
fore not included here. Moreover, whole categories of functions in that table are not even discussed here, 
such as those for polynomial operations with names starting with “Poly”, or the “ODE” solvers for ordi-
nary differential equations. If these interest you, read up on them in the XN Help menu.  

The abbreviations A, H, and N in the right-most column of Table 11.9.1 refer to chapters or sections in 
A: the Atlas of Functions by K. Oldham, J. Myland & J. Spanier, 2nd ed., Springer 2009, H: the Handbook 
of Mathematical Functions edited by M. Abramowitz & I. Stegun, NBS 1964, reprinted many times since 
by Dover, and N: the NIST Handbook of Mathematical Functions, edited by F. W. J. Olver, D. W. Lozier, 
D. F. Boisvert and C. W. Clark, Cambridge Univ. Press 2010.  

function brief description symbol refs. 

Special functions 
AiryA Airy function Ai(x) Ai(x) A56, H10.4, N9 
AiryAD First derivative of the Airy function Ai(x) Ai′(x) A56, H10.4, N9 
AiryB Airy function Bi(x)  Bi(x) A56, H10.4, N9 
AiryBD First derivative of the Airy function Bi(x) Bi′(x) A56, H10.4, N9 
BesselIx Modified Bessel function of the 1st kind In(x) In(x) A49, H9, N10 
BesseldI First derivative of the modified Bessel function In(x) In′(x) A49, H9, N10 
BesselJx Bessel function of the 1st kind Jn(x) Jn(x) A52, H9, N10 
BesseldJ First derivative of the Bessel function Jn(x) Jn′(x) A52, H9, N10 

 90



BesselKx Modified Bessel function of the 2nd kind Kn(x) Kn(x) A51, H9, N10 
BesseldK First derivative of the modified Bessel function Kn(x) Kn′(x) A51, H9, N10 
BesselYx  Bessel function of the 2nd kind Yn(x)  Yn(x) A54, H9, N10 
BesseldY First derivative of the Bessel function Yn(x) Yn′(x) A32.13, H10.1, N10 
BesselSphJ Spherical Bessel function of the 1st kind Jn(x) jn(x) A32.13, H10.1, N10 
BesselSphY Spherical Bessel function of the 2nd kind Yn(x) yn(x) A32.13, H10.1, N10 
DiGamma Digamma function ψ (x) A44, H6.3, N5 
ErrFun Error function erf(x) A40, H7, N7 
ErrFunC Error function complement erfc(x) A40, H7,N7 
HypGeom Hypergeometric function F(a,b;c;z)   A18.14, H15, H15 
Zeta Riemann zeta function  ζ (x) A3, H23.2, H25 
Trigonometric operations 
Serie_Trig Generates a trigonometric series from its harmonics 
Serie2D_Trig Generates a 2-D trigonometric series from its harmonics 
Polynomial operations 
Poly Evaluates polynomial at x  
PolyAdd Adds two polynomials  
PolyBuild Builds a polynomial for given roots  
PolyCenter Center of polynomial roots  
PolyDiv Quotient of two polynomials  
PolyInt Transformation to polynomial with same roots but integer coefficients   
PolyInterp Polynomial interpolation  
PolyInterpCoef Coefficients of polynomial interpolation  
PolyMult Product of two polynomials  
Polyn Value of polynomial P(z) for specified real or complex argument z  
Polyn2 Value of bivariant polynomial P(w, z) for specified for real or complex arguments w, z  
PolyRadius Radius of polynomial roots  
PolyRem Remainder of polynomial division  
PolyShift Shifts a polynomial from x to x + x0  
PolySolve Finds all roots of a polynomial  
PolySub Subtracts two polynomials  
PolyTerms Extracts vector of polynomial coefficients  
PolyWrite Constructs polynomial from its coefficients  
Orthogonal polynomials 
Poly_ChebychevT Evaluates Chebychev polynomial of 1st kind Tn(x) A22, H22, N18 
Poly_Weight_ChebychevT    Weight of Chebychev polynomial of 1st kind  A21, H22, N18 
Poly_ChebychevU Evaluates Chebychev polynomial of 2nd kind Un(x) A22, H22, N18 
Poly_Weight_ChebychevU    Weight of Chebychev polynomial of 2nd kind  A21, H22, N18 
Poly_Gegenbauer Evaluates Gegenbauer polynomial  Cn

(α)(x) A22, H22, N18 
Poly_Weight_Gegenbauer    Weight of Gegenbauer polynomial   A21, H22, N18 
Poly_Hermite Evaluates Hermite polynomial Hn(x) A24, H22, N18 
Poly_Weight_Hermite Weight of Hermite polynomial  A21, H22, N18 
Poly_Jacobi Evaluates Jacobi polynomial Pn

(α,β)(x) A22, H22, N18 
Poly_Weight_Jacobi Weight of Jacobi polynomial  A21, H22, N18 
Poly_Laguerre Evaluates Laguerre polynomial Ln(x) A23, H22, N18 
Poly_Weight_Laguerre Weight of Laguerre polynomial  A21, H22, N18 
Poly_Legendre Evaluates Legendre polynomial Pn(x) A21, H22, N18 
Poly_Weight_Legendre Weight of Legendre polynomial  A21, H22, N18 
Special integrals 
Convol Convolution integral of two vectors v1 ⊗ v2 
SinIntegral Sine integral Si(x) A38, H5.2, N6 
CosIntegral Cosine integral Ci(x) A38, H5.2, N6 
Exp_Integr Exponential integral Ei(x) Ei(x) A37, H5, N6 
Expn_Integr Entire exponential integral Ein(x) Ein(x) A37, H5, N6 
Fresnel_Sin Fresnel sine integral S(x) A39, H7, N7 
Fresnel_Cos Fresnel cosine integral C(x) A39, H7, N7 
IElliptic1 Elliptic integral of the 1st kind  A61, H17, N19 
IElliptic2 Elliptic integral of the 2nd kind  A61, H17, N19 
Kummer1 Confluent hypergeometric function of 1st kind M(a,b,x) A47, H13, N13 
Kummer2 Confluent hypergeometric function of 2nd kind U(a,b,x) A48, H13, N13 
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Distributions default (dtype = 0) = probability function; dtype = 1 yields cumulative function 
DSBeta  Beta distribution  A26.5  
xBetaI  Incomplete beta function 
DSBinomial Binomial distribution  
DSCauchy Cauchy (Lorentz) distribution  
DSChi Chi distribution  A26.4  
DSErlang Erlang distribution  
DSGamma Gamma distribution  
xGammaI  incomplete gamma function 
DSLevy Levy distribution  
DSLogistic Logistic distribution  
DSLogNormal Lognormal distribution  
DSMaxwell Maxwell distribution  
DSMises Von Mises distribution  
DSNormal Normal (Gaussian) distribution  A26.2  
DSPoisson Poisson distribution  
DSRayleigh Rayleigh distribution  
DSRice Rice distribution  
DSStudent Student distribution  A26.7  
DSWeibull Weibull distribution  
Least squares alternatives  
RegLinMM Straight line fit minimizing the sum of absolute values 
RegLinRM Straight line fit minimizing the deviations from the median 
Differentiation see section 9.2.11  
Diff1 First derivative of f(x)   f ′(x) 
Diff2 Second derivative of f(x)   f ″(x) 
DPoly   Value of nth order derivative of polynomial P(x) at specified x 
Dpolyn Value of nth order derivative of polynomial P(z) at specified real or complex argument z 
Grad   Vector of first derivatives of multivariate function 
Hessian   Hessian matrix of a multivariate function 
Jacobian    Jacobian matrix of a vector function 
Integration  
Integr Integrates f (x) between a and b  
Integr_DE  Integrates f (x) using double exponential transformation 
Integr_2D  2-D integration of f (x,y) 
Integr_NC  Newton-Cotes integration of  f (x) between a and b  
Integr_Ro  Romberg integration of f (x) between a and b 
IntegrData  trapezoidal integration of 1st, 3rd (default), or 5th degree 
IntegrData2D  bidimensional trapezoidal integration of a piecewise-rectangular grid 
IntegrDataC  Newton-Cotes integration of a complex data vector v 
IntPowSin  Integrates sinn(x) 
IntPowCos  Integrates cosn(x) 
Fourier transformations     
FFT Fast Fourier transform of N = 2n real input data 
FFT_INV Fast inverse Fourier transform of 2n real input data 
FFT2D Fast 2-D Fourier transform 
FFT2D_INV Fast 2-D inverse Fourier transform 
DFT Discrete Fourier transform of any number N of real input data  
DFT_INV Discrete inverse Fourier transform of any number N of real input data  
DFSP Amplitude and phase angle determined by discrete Fourier transform  
DFSP_INV The inverse of DFSP, viz. the reconstitution of f(t) from the DFT amplitude and phase angle 
Fourier_Sin Integrates f(x) sin(kx) from a to ∞ 
Integr_fSin  Integrates f(x) sin(kx) with Filon’s formula 
Fourier_Cos Integrates f(x) cos(kx) from a to ∞ 
Integr_fCos  Integrates f(x) cos(kx) with Filon’s formula 
Equation solvers 
DiophEqu  Solves the diophantine equation ax + by = c 
PellEqu   Solves Brouncker-Pell equation x2 – dy2 = 1 
SysPoly2   Solves system of two 2nd-degree polynomials 
Zero_Bisec  Finds root of f(x) by bisection 
Zero_Sec   Finds root of f(x) with the secant method 
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ODE solvers         
ODE_COR  Solves ODE with multi-step corrector 
ODE_PC2I  Solves ODE with implicit 2nd-order predictor-corrector 
ODE_PC4  Solves ODE with 2nd-order Adams-Bashforth-Moulton method 
ODE_PRE  Solves ODE with multi-step predictor 
ODE_RK4  Solves ODE with 4th-order Runge-Kutta method 
ODE_SYSL  Solves linear system of ODEs with constant coefficients 
Interpolating tools  
CSpline_Coeff Coefficients of cubic spline 
CSpline_Eval Interpolates using fast cubic spline interpolation 
CSpline_Interp Interpolates using cubic spline interpolation 
CSpline_Pre Second derivative of cubic spline 
FracInterp Interpolation with continued fraction 
FracInterpCoef Coefficients of interpolation with continued fraction 
Interp_Mesh Linear interpolation in a rectangular mesh of data points 
Extrapolating tools 
ExtDelta2 Aitken’s delta-square extrapolation 
Primes 
Factor Decomposes an integer into its prime factors 
NextPrime First prime beyond n for primes < 253 
PrevPrime First prime before n for primes < 253 

Totient Euler’s Totient function  
Prime Yields “P” if prime, smallest factor if not prime 
Measures of data agreement 
DgMat Number of matching most-significant digits between x1 and x2 
FDgMat = pE using second argument as reference 
LRE = pE using second argument as reference 
mjkLRE = pE using second argument as reference 
Data conversions 
cvBinDec Convert from binary to decimal 
cvDecBin Convert from decimal to binary 
cvBaseDec Converts from any base-n system (1<n<27) to decimal 
cvDecBase Converts from decimal to any base-n system (1<n<27)  
s2Dbl Converts string to double precision 
Miscellany 
dBel Yields the decibel level, db(x) = 20 log(x) 
Flip Inverts order of vector elements 
Fract Approximates decimal fraction as a quotient of two integers 
FractCont Continued fraction of x in double precision 
FractContSqr Continued fraction of √n 
MCD Maximum (largest, greatest) common divisor 
MCM Minimum (smallest, least) common multiplier 
SumDigits Sums the values of the digits of an integer 

Table 11.9.1: The double-precision functions in XN.xla(m). Advise: before first use of one of these 
functions, consult the relevant page in the Xnumbers v.6.0 Help file  Contents  Index of Func-
tions, which you find on your computer by clicking on the Help button of the short XN toolbar.  

macro brief description symbol  
 

Matrix operations 
Transpose  AT  
Add  A + B 
Subtract  A – B 
Scalar multiply  k A 
Matrix multiply  A B 
Scalar product  AT B 
Invert  A–1   
Determinant  
Similarity transformation  B–1 A B 
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Solve a linear system  A X = B 
Solve an overdetermined linear system (n > m) A X = B 
Norm    A   
Crout decomposition  LU  
Cholesky decomposition  LLT 
Singular value decomposition  U D VT 
Integration 
Double integration  
Triple integration  
Integration from –∞ to +∞   
Fourier transformation 
Discrete Fourier transformation  
2-D discrete Fourier transformation  
Sampler (of a specified function)  
Number theory 
Factors  
Prime number generation  
Prime test 
Integer relation finder   of polynomial or polyvariate relations 
Polynomials 
Rootfinder  
Builder  
Factors 
Orthogonal zero 
Orthogonal coeff.   
Optimizers 
Downhill simplex Multivariate Nelder-Mead algorithm, robust & derivative-free  
Downhill simplex / Resets 
1-D divide & conquer Monovariate, bisection-based algorithm, robust and derivative-free 
Least squares 
Linear  
Mesh fill  
ODE Solvers 
IVP Solver  
Slope grid 
Polynomial 

Table 11.9.2: The double-precision macros in XN.xla(m), accessible from the XN toolbar under Macros. 
For information, consult the relevant page in the Xnumbers v.6.0 Help file  Contents  Index of Macros.  

11.11  The XN functions for extended precision (AE3 pp. 547-554) 
Leonardo Volpi wrote two general programs using extended numberlength, implemented in VB and 

VBA as XNumbers.xla for incorporation in functions and directly in the spreadsheet, and as XNum-
bers.dll as a digital linking library (dll) for use in macros.  Both can still be downloaded from Volpi’s web 
site, http: // digilander . libero . it / foxes / SoftwareDownload . htm. However, they are no longer updated, and 
XNumbers.dll cannot be used in Excel 2007 or Excel 2010. Fortunately, John Beyers has greatly extended 
XNumbers.xla, made it readily usable in macros, relabeled this updated version XN.xla, and also made it 
available for Excel 2007 and 2010 as XN.xlam. These are freely downloadable from the website http . 

www. thetropicalevents . com / XNumbers60 and are relayed on my excellaneous website. It is this recent 
version of XNumbers.xla that will be used below, because it can be used everywhere in Excel: on the 
spreadsheet, and (after its installation in VBA) in functions and in subroutines, including macros. Install-
ing XN.xla or XN.xlam is described in section 1.2.6. Moreover, you have already encountered its double-
precision contributions in earlier chapters. Here we will emphasize its uses for high numerical precision. 

The best explanation of all changes John Beyers has made in Xnumbers, plus a list of the many new 
functions he has added, can be found once XN and its XN toolbar are installed. You do the latter by click-
ing once on the XN book icon. (It is a toggle switch: clicking on the book icon once more will close the 
toolbar.) Then click on the Help button of that XN toolbar, select Help on-line, and in the resulting 
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Xnumbers version 6.0 file click at the end of its first paragraph on “changes to version 6.0”. One special 
aspect of XN is that it can be configured. Fortunately, there is no need to change the pre-configured set-
tings, which will do fine for most functions. 

In what follows we will use XN.xla6051-7A, as of this writing the latest version in its simplest (and 
fastest) incarnation, which can operate with numbers of up to 630 decimals. Slightly slower versions with 
higher maximum precisions (of up to 4030 decimals) can also be downloaded, as can the corresponding 
Excel 2007/2010 versions of XN.xlam. Apart from their speed and maximum precision, all versions oper-
ate in identical fashion. Near the upper limit of available precision, the last few decimals are not always 
reliable, and it is therefore better to stay away from that very edge by two packets (i.e., by 14 decimals for 
7-decimal packets) assigned in the XNToolbar under X-Edit  Configuration  Digit Max Adjustment 
as internal guard decimals. Also keep in mind that some XN functions can be rather slow at or near 
maximal precision, prime examples being xErf and xErfc, and the functions that use these: xNormal, 
xNormalS, and xMaxwell. By staying away from the limit by two packets as indicated above, the speed 
problem largely disappears: with DgtMax = 500, xErf computes its result in less than one second, and it is 
virtually instantaneous for DgtMax = 100. Operations on large matrices can also be slow, because the 
number of operations typically increases with some power larger than one of the number of elements in-
volved. And especially slow can be iterative matrix computations, such as xSVD. But if you really need 
the result, what’s a few seconds?  

Personally I have never encountered a problem that required even 500 decimals of precision. I use 35 
as my default value for all but the most difficult problems, and sometimes 28 to keep the numbers short. 

Here are the advantages of XN: 
(1) XN provides for a variable numerical precision. The desired precision can be specified for the en-

tire spreadsheet, function, or subroutine, while still remaining adjustable for each individual instruction.   
(2) XN can present its results either in full length or in regular, double precision format. In the latter 

case, i.e., when the output is converted back to double precision with an the instruction such as =xCDbl, 
it does not require any modifications of the input and output stages of already existing functions or mac-
ros, while the data processing is done in background at the selected higher precision.  

(3) XN can be used directly on the spreadsheet. Many Excel instructions now have XN equivalents, 
including all of its engineering, statistical, and trigonometric functions. Moreover, there are many new 
functions. The required code changes in existing VBA functions and subroutines are relatively minor. 

(4) If you want to make sure that data processing errors are kept to a minimum, and that at least the 
first 14 of the 15 decimals displaying your spreadsheet results are not distorted by limited computer preci-
sion, XN is your best bet.    

Here are its disadvantages:  
(1) While you can use XN functions on your spreadsheet, upgrading existing functions and macros to 

extended precision is only possible when you have access to their source code. Fortunately, that automati-
cally includes your own, custom-made creations, and all open-access functions and macros (including 
those in the MacroBundle) that you can find in the literature.  

(2) XN can be noticeably slow in execution, especially when we combine high precision with repeated 
use, as in multiply nested loops. This reflects the trade-off between speed and accuracy.  

(3) If you want to share your active spreadsheets with colleagues (rather than just its results as, say, a 
pdf), they will need to install XN.xla(m) on their machines. Since XN is free, that is not much of a disad-
vantage, unless your institution blocks it. In that case, consult your IT manager.. 

While these disadvantages are rather minor compared with the possible gains, I do not recommend that 
you use XN for routine use, where it may often be overkill. Keep it for critical applications, and for dou-
ble-checking that your intermediary and final results do not lose needed accuracy to numerically insuffi-
cient precision. Therefore, its principal applications will likely be to problems where double precision is 
known to produce substandard results, typically because of algorithmic cancellation and/or accumulation 
errors. XN can also be very useful as a final check on numerical results of consequence, and as a high-
precision reference for testing algorithms and their spreadsheet implementations. Even such occasional 
uses fully warrant its inclusion in a book on advanced Excel.   

Below you will find a short alphabetical list of the XN functions currently available in the 
XN.xla(m) downloads. In an effort to streamline the nomenclatures used in Matrix.xla(m) and 
XN.xla(m), some function names have recently been modified, such as xMatMult for extended-
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precision matrix inversion, which has become xMMult, to be more compatible with MMULT in 
Excel and with xMMultC and xMMultSC in XN. Check in your Paste Function (or Insert Func-
tion) dialog box which commands your version expects; the 13 function names which used Mat 
instead of M to specify that they were matrix functions are identified below with asterisks. Ear-
lier versions are grandfathered, and are still listed in the Paste Function dialog box. They will be 
translated automatically into their most recent names, so that spreadsheets using older function 
names will still work properly as spreadsheet functions. But VBA has become more demanding, 
and macros using older names may have to be updated to use their current names. Not featured 
here (but listed in the PasteFunction box) are a number of functions with the last letter R, which 
stands for “raw” and are meant for use inside VBA programs, where they are some 10% faster.  

As for all Excel functions, capitalization is ignored by Excel (except in quoted text), and is 
used here merely to enhance readability by emphasizing the different parts of compound terms. 
A categorized listing with somewhat greater detail can be found in appendix D, and specific ex-
amples are often available by consulting the on-screen Help file accessible after you have loaded 
the small XN toolbar.     
extended preci-    brief function                      Excel double 
 sion  function  description               precision equivalent 
vRoundR relative banker’s rouding, default: to 15 decimal relative precision  
x_And Boolean logic AND  AND 
x_If Boolean logic IF, including condition test on numeric strings  IF 
x_Not Boolean logic NOT  NOT 
x_Or Boolean logic OR  OR 
x2Dbl converts to double precision, slower than xCDbl, more accurate, but seldom needed  
x2Pi 2 π ≈ 6.283… 
xAbs absolute value ABS 
xACos inverse cosine of an angle, =arcos(α)  ACOS 
xACosH inverse hyperbolic cosine of a number, =arcosh(x) ACOSH 
xAdd add  + 
xAddMod modular addition   
xAdj2Pi adjusted angle, in rad between 0 and +2π  
xAdjPi adjusted angle, in rad between –π and +π   
xALog 10-based antilogarithm, 10x  
xAngleC complement of angle α, =π/2 – α  
xASin inverse sine of an angle, =arcsin(α) ASIN  
xASinH inverse hyperbolic sine of a number, =arsinh(x) ASINH 
xATan inverse tangent of an angle, =arctan(α) ATAN 
xATan2 arctan in rad between –π and +π  
xATanH inverse hyperbolic tangent of a number, =artanh(x) ATANH 
xAveDev average of the absolute deviation from the mean AVEDEV  
xBaseChange base converter BASECHANGE 
xBeta beta function 
xBinomial binomial distribution BINOMDIST  
xCalc formula evaluator or parser  
xCat concatenate  &  
xCDbl convert to double precision   
xCeil ceiling CEILING 
xClip yields Ceil for T ≥ Ceil, T for Floor < T < Ceiling, and Floor for T ≤ Floor  
xComb binomial coefficient  
xComb_Big binomial coefficient for large numbers  
xComp comparison, yields 1 for a > b, 0 for a = b, and –1 for a < b; yields sign of a if b absent IF 
xComp1 absolute comparison, yields 1 for xAbs > 1, 0 for xAbs = 1, and –1 for xAbs < 1  
xCorrel correlation coefficient  CORREL   
xCos cosine of an angle, =cos(α)  
xCosH hyperbolic cosine of a number, =cosh(x)  
xCoVar covariance  COVAR 
xCplx builds complex number z from real and imaginary component, selects i or j as √–1. COMPLEX 
xCplxAbs absolute value of complex number, z IMABS  
xCplxACos complex inverse cosine, arcos(z)  
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xCplxACosH complex inverse hyperbolic cosine, arsinh(z)  
xCplxAdd complex addition  
xCplxArg argument of complex number, arctan(Im/Re) IMARGUMENT  
xCplxASin complex inverse sine, arcsin(z) 
xCplxASinH complex inverse hyperbolic sine, arsinh(z) 
xCplxATan complex inverse tangent, arctan(z) 
xCplxATanH complex inverse hyperbolic tangent, artanh(z) 
xCplxConj complex conjugate IMCONJUGATE 
xCplxCos complex cosine, cos(z) IMCOS 
xCplxCosH complex hyperbolic cosine, cosh(z) 
xCplxDiv complex division IMDIV 
xCplxExp complex exponentiation, ez IMEXP 
xCplxInv complex inversion, 1/z 
xCplxLn complex natural logarithm, ln(z) IMLN 
xCplxLog complex logarithm to any base n, logn(z) 
xCplxLog10 complex 10-based logarithm, log(z) IMLOG10  
xCplxLog2 complex 2-based logarithm, log2(z) IMLOG2 
xCplxMult complex multiplication 
xCplxNeg complex negation, –z 
xCplxPolar converts complex number from rectangular to polar 
xCplxPow raises complex number to integer power n, zn, default n = 2 IMPOWER 
xCplxRect converts complex number from polar to rectangular 
xCplxRoot nth root of complex number, z1/n, default n = 2 
xCplxSin complex sine, sin(z) IMSIN 
xCplxSinH complex hyperbolic sine, sinh(z) 
xCplxSqr complex square root, √z IMSQRT 
xCplxSub complex subtraction IMSUB 
xCplxTan complex tangent, tan(z) 
xCplxTanH complex hyperbolic tangent, tanh(z) 
xCStr converts a double-precision number to a string, default Digit_Max = 767  
xCvExp converts into scientific notation, x = mantissa ×10exponent , default exponent = 0 
xDec decimal part of number 
xDecr decrements a number by 1, xSub(x,1) 
xDegrees converts radians into degrees DEGREES 
xDelta tests whether two numbers are equal DELTA 
xDevSq sum of squares of deviations from sample average DEVSQ 
xDgMat number of matching digits 
xDgt the number of digits 
xDgtS the number of significant digits 
xDiff nth-order derivative (1 ≤ n ≤ 20) of a function f(x), default n = 1 
xDiff1 first-order derivative with choice of forward, central, or backward differencing 
xDiff2 second-order derivative with choice of forward, central, or backward differencing 
xDiffI nth-order derivative with choice of forward, central, or backward differencing 
xDiffOpt displays nth-order derivative plus values of h and d used 
xDiv division  / 
xDivInt integer division  \ 
xDivMod modular division 
xDivTrunc truncated quotient Q = xTrunc(N/D) 
xDLGI 1st derivative of Lagrange interpolation polynomial at specified x-value 
xDPoly 1st derivative of polynomial at specified x-value 
xE e ≈ 2.718…, the base of natural logarithms 
xErF error function ERF 
xErFC error function complement ERFC 
xEu Euler’s gamma 
xEval formula parser, evaluates quasi-algebraic expressions 
xEvall much slower version of xEval, can associate labels with input data 
xEven rounds to nearest even number EVEN 
xExp exponentiation, ex EXP 
xExpa raises a to the power x, ax 
xExpBase raises a to the power x, ax 
xExponent the exponent of a number x = mantissa ×10exponent 
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xExtDelta2 Aitken’s delta-square extrapolation 
xFact factorial, n! FACT 
xFact2 double-step (odd/even) factorial FACTDOUBLE 
xFib Fibonacci number 
xFisher Fisher transformation FISHER 
xFishInv inverse Fisher transformation FISHERINV 
xFloor rounds towards zero to nearest significant multiple FLOOR 
xFmt formats string with selectable lead zeroes, trailing zeroes, and rounding 
xFormat formats number in groups of n digits FORMAT 
xFract numerator and denominator of a fraction  
xFractCont continued fraction 
xGamma gamma function, Γ(x) GAMMADIST  
xGammaF Fisher’s gamma distribution  
xGammaLn natural logarithm of the gamma function, ln Γ(x) GAMMALN 
xGammaLog 10-based logarithm of the gamma function, ln Γ(x) 
xGammaQ ratoio of two gamma functions, Γ(x1) / Γ(x2) 
xGEstep threshold comparison, = 1 if x ≥ step, otherwise = 0 GESTEP 
xGm Euler’s gamma, =xEu 
xGMmean geometric mean GEOMEAN 
xGrad gradient vector, i.e., first derivatives of a function f(x,y,…) 
xHMean harmonic mean HARMEAN 
xImag imaginary part of complex number IMAGINARY 
xIncr increments by 1, =xAdd(x,1) 
xInt integer part of number 
xIntercept intercept of least squares straight line with y-axis INTERCEPT 
xIntLog10 =Int[log(x)/log(10)] 
xIntLog2 =Int[log(x)/log(2)] 
xIntMod remainder R = sign(D) * { N – D * xInt(N/D) }  
xIntQR quotient Q = xInt(N/D) and remainder R = N – D * Q   
xInv inverse, 1/x 
xIsErr 0 if no errors in range, otherwise 1 
xIsErrNA 0 if no errors in range, otherwise 1, ignoring N/A errors 
xIsEven TRUE if trunc(x) = even, FALSE if odd ISEVEN 
xIsInteger TRUE if integer, FALSE if not 
xIsNumeric = 0 for non-numeric, 1 for double precision, 2 for extended precision 
xIsOdd TRUE if trunc(x) = odd, FALSE if even ISODD  
xIsSquare TRUE if perfect square 
xIsXNumber TRUE if extended precision number that cannot be converted into double precision 
xJacobian Jacobian matrix of a vector function  
xIElliptic1 elliptic integral of 1st kind  
xIElliptic2  elliptic integral of 2nd kind  
xLGI interpolates Lagrange polynomial 
xLn natural logarithm LN 
xLn10 = ln(10) ≈ 2.302... 
xLn2 = ln(2) ≈ 0.693… 
xLog logarithm of any integer base n, logn, default n = 10 LOG 
xLogistic logistic distribution 
xLogNorm lognormal distribution 
xLRE negative logarithm of relative or absolute error 
xMAbs  modulus of matrix or vector, M  
xMAbsC Euclidian norm of complex matrix C 
xMAdd     matrix addition, = M1 + M2 
xMAddC  complex matrix addition, = C1 + C2 
xMantissa mantissa of a number x = mantissa ×10exponent  
xMatAbs * modulus of matrix or vector, M , now xMAbs 
xMatAdd * matrix addition, = M1 + M2  , now xMAdd 
xMatBAB * similarity transformation, = B–1 A B , now xMBAB 
xMatDet * determinant of a matrix, now xMDet MDETERM 
xMatInv * inversion of a square matrix, = M–1 , now xMInv MINVERSE 
xMatLL * Cholesky decomposition, = L LH , now xMCholesky  
xMatLU * lower/upper decomposition = L U with Crout’s algorithm, now xMLU MLU 
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xMatMult * matrix multiplication, M1 M2  , now xMMult MMULT 
xMatPow * raising a square matrix to an integer power n, = Mn  , now xMPow 
xMatSub * subtraction of two real matrices, = M1 – M2

  , now xMSub 
xMax maximum value in a range of values 
xMaxwell Maxwell-Boltzmann distribution 
xMBAB  similarity transformation, = B–1 A B 
xMCD maximum common divisor = greatest common denominator GCD 
xMCharC characteristic polynomial of complex matrix 
xMCholesky Cholesky decomposition, = L LH   
xMCM minimum common multiple = least common multiple LCM 
xMCond condition number κ of a real matrix  
xMCondC condition number κ of a complex matrix  
xMCplx converts two real matrices into one complex matrix  
xMDet  determinant of a matrix MDETERM 
xMDetC determinant of a complex matrix 
xMean arithmetic mean AVERAGE 
xMedian median MEDIAN 
xMExp  matrix series expansion  
xMExpC complex series expansion for exp(C) 
xMExpErr  truncation error of xMatExp 
xMExpErrC truncated error of complex series expansion for exp(C) 
xMin minimum value in a range of values 
xMInv  inversion of a square matrix, = M–1  MINVERSE 
xMInvC regular inverse of complex square matrix, =C–1  
xMLU  lower/upper decomposition = L U with Crout’s algorithm MLU 
xMMopUp  removes matrix elements aij whenaij< ErrMin 
xMMult  matrix multiplication, M1 M2 MMULT 
xMMultC multiplies two complex matrices, C1+C2 
xMMultCS multiplies a complex matrix and a complex scalar, = C S 
xMNormalize normalizes the column vectors of a real matrix  
xMNormalizeC normalizes the column vectors of a complex matrix  
xMode most frequently occurring number in range of numbers MODE 
xMpCond negative 10-based logarithm of condition number pκ  of a real matrix κ  
xMpCondC negative 10-based logarithm of condition number pκ of a complex matrix  
xMPow  raising a square matrix to an integer power n, = Mn 
xMPowC raise complex square matrix C to an integer power n, =Cn 
xMPseudoInv pseudo-inverse of matrix based on real SVD 
xMPseudoInvC pseudo-inverse of matrix based on complex SVD 
xMRound rounds a number to the nearest multiple MROUND 
xMSub  subtraction of two real matrices, = M1 – M2 
xMSubC subtraction of two complex matrices, = C1 – C2 
xMTC transpose of a complex matrix C 
xMTH Hermitian (conjugate, adjoint) transpose of a complex matrix C 
xMult multiplication  * 
xMultinom generates a multinomial MULTINOMIAL 
xMultMod modular multiplication  
xNeg negation, = –x   – 
xNormal normal distribution NORMDIST 
xNormalS cumulative normal distribution    :  NORM.S.DIST 
xNormS cumulative standard normal distribution NORMSDIST 
xOdd rounds up to the nearest odd integer ODD 
xOddDen checks if denominator is odd (TRUE) or even (FALSE) 
xPearson Pearson product moment correlation coefficient PEARSON 
xPerm the number of possible permutations PERMUT  
xPi π ≈ 3.141… PI() 
xPi2 π / 2 ≈ 1.570… 
xPi4 π / 4 ≈ 0.785… 
xPoly evaluates polynomial P(x) at specified x 
xPolyAdd adds two polynomials in x 
xPolyDiv divides two polynomials in x 
xPolyMult multiplies two polynomials in x 
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xPolyRem the remainder of polynomial division 
xPolySub subtracts two polynomials in x 
xPolyTerms extracts polynomial coefficients as a vector  
xPow raises number to power n, XN, n integer for x < 0 
xPow2 integer powers of 2, 2n 
xPowMod modular power, ap mod m 
xProd the product of two or more numbers PRODUCT  
xProdScal scalar product of real vectors 
xProdScalC  scalar product of complex vectors 
xProdVect vector product of two 3D vectors 
xQMean quadratic mean 
xRad12 =√12 
xRad5 =√5 
xRadians converts degrees to radians RADIANS  
xRand generates random numbers with uniform distribution U(0,1) between 0 and 1 RAND 
xRandD generates random numbers with uniform distribution U(a,b) between a and b RANDBETWEEN 
xRandI generates random numbers with uniform distribution U(m,n) between integers m and n  
xRank the rank of a number in a list of numbers RANK 
xRayleigh Rayleigh distribution 
xRDown rounds towards zero, default rounds to an integer ROUNDDOWN 
xReal real component of complex number IMREAL 
xRegLinCoef coefficients of a multivariate least squares fit  
xRegLinCov covariance matrix of the coefficients of a multivariate least squares fit  
xRegLinErr standard deviations of the coefficients of a multivariate least squares fit 
xRegLinEval evaluates the least squares results at a specified value of x 
xRegLinStat R2 and standard deviation sf  of a multivariate least squares fit 
xRegPolyCoef coefficients of the least squares fit to an internally computed polynomial in x 
xRegPolyErr standard deviations of the coefficients of the least squares fit to that polynomial in x 
xRegPolyStat R2 and standard deviation of the least squares fit to that polynomial in x 
xRegrL coefficients of a SVD-based multivariate linear least squares    
xRegrLC coefficients of a SVD-based complex multivariate linear least squares    
xRoot nth root, =x1/n 
xRound rounding, with ending-5 rounded away from zero, default rounds to an integer  ROUND 
xRoundR relative rounding, default to 15 decimals 
xRSq square of the Pearson product moment correlation coefficient   RSQ 
xRUp rounds away from zero, default rounds up to an integer    ROUNDUP 
xSerie generates a series for f(x) over a specified range in x  
xSerie2D generates a doubleseries for f(x,y) over specified ranges in x and y 
xSerSum sums a power series SERIESSUM 
xSin sine of an angle, =sinα) SIN 
xSinH hyperbolic sine of a number, =sinh(x) SINH 
xSlope slope of least squares fit to a straight line SLOPE 
xSplit splits a number x = mantissa ×10exponent into its mantissa and exponent 
xSqr square root, =√x SQRT 
xSqrPi square root of pi, =√π 
xStatis univariate statistical summary 
xStDev sample standard deviation of repeat measurements STDEV 
xStDevP population standard deviation of repeat measurements STDEVP 
xSub subtract  –  
xSubMod modular subtraction 
xSum sum of a range of cells SUM 
xSumProd sum product of two cell ranges SUMPRODUCT 
xSumSq sum of squares of terms in an array SUMSQ 
xSumX2mY2 sum of the differences of squares of corresponding terms in two arrays SUMY2MY2 
xSumX2pY2 sum of the sum of squares of corresponding terms in two arrays SUMY2PY2 
xSumXmY2 sum of the squares of the differences between corresponding terms in two arrays SUMYMY2  
xSVDD Σ matrix of singular value decomposition M = U Σ VT of a rectangular matrix M with only real components 
xSVDDC Σ matrix of singular value decomposition M = U Σ VH of a rectangular matrix with complex components 
xSVDU U matrix of singular value decomposition M = U Σ VT of a rectangular matrix with only real components 
xSVDUC U matrix of singular value decomposition M = U Σ VH of a rectangular matrix with complex components 
xSVDV V matrix of singular value decomposition M = U Σ VT of a rectangular matrix with only real components 
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xSVDVC V matrix of singular value decomposition M = U Σ VH of a rectangular matrix with complex components 
xSysLin Gauss-Jordan solution of linear system A x = B 
xSysLinC Gauss-Jordan solution of complex linear system A x = B 
xTan tangent of an angle, =tan(α) TAN 
xTanH hyperbolic tangent of a number, =tanh(x) TANH 
xTrunc truncation to fixed number n of placed past the decimal point, default n = 0 TRUNC  
xTruncMod remainder R = N – D * xTrunc(N/D), with sign of numerator N   
xTruncQR truncate (number, divisor) to yield (quotient Q, remainder R)   
xTruncR truncate to fixed number n of significant digits  
xUnformat removes all formatting characters 
xVar sample variance of a set of repeat measurements VAR 
xVarP population variance of a set of repeat measurements VARP 
xWeibull Weibull distribution 
xZeta zeta distribution 
  

Table 11.11.1: Alphabetical listing of the XN functions with extended precision (beyond quadruple), readily 
identifiable by their prefix x. Some “raw” duplicate functions (with last letter R) have been omitted. For the sake 
of uniformity with the function names in Matrix.xla(m), those indicated with * were updated to function names 
that started with xM instead of xMat, but were grandfathered so that you can still use the older spreadsheets.  

11.15 Filip, once more (AE3 pp. 578-581) 
We will use Filip.dat to test xnLS, because it has been modified specifically to accommodate high 

powers of high-precision x-values by computing xn inside the macro. Table 11.15.1 shows our results, for 
various D-values, in terms of their pE-values based on the NIST values as reference. As you can see in 
that table, we find complete agreement with the NIST-published values for all coefficients and all stan-
dard deviations, i.e., to pE = 15, when we use D ≥ 34. At D = 18 we obtain pE = 0, in agreement with the 
total failure of LS to solve Filip.dat in double precision with the traditional least squares algorithm. The 
contrast could not be starker! 

Both xRegPolyCoeff and xnLS clearly illustrate the power and convenience of XN. With the relatively 
small additions of negating the distortion involved in binary data storage, where necessary computing the 
higher powers of x internally, and replacing a limited number of instructions by the corresponding XN 
functions, we have transformed a primitive custom algorithm LS that could not get a single coefficient of 
Filip.dat right to one that passes this most difficult of all NIST linear least squares tests. No specialized 
knowledge about the subtleties of matrix inversion (such as embedded in singular value decomposition) 
are needed. Our “brute force” approach to use higher computer precision with an inferior algorithm cer-
tainly beats most commercial statistical software packages in fitting Filip.dat. Not bad for free, open-
access spreadsheet software. The various results obtained in this book with Filip.dat are summarized in 
Table 11.15.2. 

 D pE(ai) pE(si) D  pE(ai) pE(si) D  pE(ai) pE(si) 

 18   0.00   0.00 24   5.11   5.45 30  11.53  11.85 
 19   0.00   0.00 25   5.99   6.32 31  12.99  13.34 
 20   2.02   0.17 26   6.92   7.25 32  13.39  13.68 
 21   2.58   0.69 27   8.33   8.64 33  14.03  14.46 
 22   2.95   2.88 28   9.07   9.41  34  15.00  15.00 
 23   5.55   3.97 29 10.52 10.85 35  15.00  15.00 

Table 11.15.1: The dependence of the results obtained by xnLS with Filip.dat to the NIST StRD refer-
ence values for the coefficients ai and the standard deviations si, as measured by its lowest pE-value in 
each category as a function of the specified decimal precision D used. For D > 35 the pE is always 15.  
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        least squares            standard        
    software used  coefficients           deviations       covariances 
    ai                 si               vij 

classical least suares (LS)    0  0  0 
pre-2003 LinEst and Regression   0  0 – 

BigMatrix linear regression   6.4  – – 
singular value decomposition (SVD)    7.7  – – 
post-2003 LinEst and Regression   7.7  7.5 – 
LS + polynomial centering  10   –   
SVD + polynomial centering 13.7   – – 
post-2003 LinEst + polynomial centering 13.7  7.5 – 
BigMatrix polynomial regression# 14   – – 
xRegPolyCoef# D ≥ 34    15   – – 
xnLS1# with D ≥ 34    15  15   

Table 11.15.2: A score card of linear least squares analyses of Filip.dat in terms of the error crite-
rion pEmin. Only LS and xnLS provide the covariance matrix, but these are merely check-marked 
here, because NIST provides no reference values for comparison. D = 35 is our recommended de-
fault (quintuple) precision. Routines that compute xn internally are indicated with #.  

 test data set D test data set D test data set D  

 Norris 19 Filip 34 Wampler3 25 
 Pontius 20 Longley 23 Wampler4 25 

NoInt1 16* Wampler1 28 Wampler5 25 
NoInt2 16* Wampler2 23 

Table 11.15.3: The minimum number of decimals D needed to get all coefficients ai, their 
standard deviations si, and the standard deviation of the fit sf, to all specified 15 decimals 
with xnLS.  *:  pE = 15 is already obtained with the standard double-precision macro LS.  

Table 11.15.3 shows how many decimals xnLS needs for each of the eleven NIST StRD linear least 
squares test data to get all its least squares coefficients and standard deviations correct to all 15 decimals 
specified by NIST. Note that you don’t always need extended precision to get pE = 15: with NoInt1 and 
NoInt2 you can already obtain this with the standard double-precision macro LS. As our test we used the 
function xpE based on (9.1.1), but modified here by making that criterion readily user-selectable (as the 
value of C in the function code), and using the more stringent precision criterion of 15 rather than the 14 
used in (9.1.2). The actual function xpE used for Table 11.15.3 relies on relative rounding, and is shown 
here:  
Function xpE(number, reference, Optional vRR) 
' vRR is the value for Relarive Rounding used, here with  
' a default of 15 (decimals) for "double precision" 
Dim N, R, pE 
If IsMissing(vRR) Then vRR = 15 
N = vRoundR(number, vRR) 
R = vRoundR(reference, vRRC) 
If xComp(N, R) = 0 Then pE = C 
If (xComp(N, R) <> 0 And xComp(R, 0) = 0) Then _ 
  pE = xNeg(xLog(xAbs(N))) 
If (xComp(N, R) <> 0 And xComp(R, 0) <> 0) Then _ 
  pE = xNeg(xLog(xAbs(xDiv(xSub(N, R), R)))) 
If xComp(pE, 0) <= 0 Then pE = 0 
If xComp(pE, C) = 1 Then pE = vRR 
xpE = vRoundR(pE, vRR) 
End Function 

Given the central role of least squares analysis in this book, it was perhaps fitting to return to Filip.dat 
as our last example. We encountered the traditional least squares formalism in section 10.5, but its im-
plementation in our custom macro LS could not make any sense of Filip.dat, and neither could the pre-
2003 Excel routines LinEst and Regression, which were likewise based on the classical pseudo-inverse 
(XT X)–1 XT. Singular value decomposition described in section 10.11 made it possible to find the coeffi-
cients ai to pE ≥ 7.5, and the same applied to Excel’s LinEst and Regression since their 2003 update, be-
cause they use the related QR factorization. Further progress could be made by polynomial centering, see 
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section 10.7, and their combined results came close to the NIST reference data for the coefficients ai, with 
a minimum pE of 13.7, i.e., with relative errors no larger than 2×10–14. BigMatrix has a macro that, with 
quadruple precision and internally computing the powers of x, can even achieve slightly better results, 
with pE ≥ 14 for both the coefficients ai and their standard deviations si. However, all of these would still 
leave us without the covariances vij. In section 11.14 we therefore modified LS with XN, in order to suit 
all of our requirements.  

Why so much emphasis on the covariances? First, look at the data obtained from Filip.dat for not only 
ai but also si. The ratios ai/si are less than five for all eleven coefficients, indicating that the answers are 
not very precise. But let’s assume that Filip.dat reflects actually observed data, as claimed by NIST. In 
that case we can either fit them to a simple empirical model, using as few parameters as possible, to de-
scribe the overall character of the results of our measurement, and be able to interpolate them and, per-
haps, even extrapolate them to adjacent x-values, or we can use a theoretical framework. In the first case, 
a simple empirical fit to the general shape of the curve would certainly not use a power series in x, see 
Am. J. Phys. 75 (2007) 617, especially since a tenth-order polynomial will start to oscillate violently just 
outside the measurement range, making it unsuitable for extrapolation, and even questionable for interpo-
lation. The polynomial model therefore implies some theoretical basis, in which the parameters obtained 
should be interpretable. And therein lies the rub: if any conclusions drawn from the fitting coefficients ai 
involve more than one coefficient, we definitely need the covariances, because the standard deviations by 
themselves are then powerless to provide reliable uncertainty estimates. Why? Just do the fit with xnLS, 
observe its output on your monitor screen or send the output to a color printer, and look at the linear cor-
relation coefficients rij, as defined in (2.10.2), between the various coefficients ai. It is a veritable sea of 
red ink, indicating that these coefficients show very high mutual dependencies. Every rij of adjacent pow-
ers of x (i.e., every rij for which j = i ± 1) is at least 0.9996, every rij where j = i ± 2) is at least 0.9985, 
etc., and even the least strongly coupled coefficient, that between a0 and a10, has an rij of 0.965. The mu-
tual dependence of these coefficients is so strong that, without their covariances, no valid uncertainties 
can be assigned to any functions depending on two or more ai-values.   

Incidentally, you might well ask how realistic Filip.dat is as a test set. NIST labels it as from 
an “observed” rather than a “generated” source, but that does not necessarily exclude a large 
amount of doctoring. One seldom encounters raw experimental data that are significant to ten 
decimal places, with such uniformly high covariances, that would need to be fitted to a tenth-
order polynomial. But even if  Filip.dat was artfully crafted, perhaps starting from a set of real 
experimental data, it is a vivid illustration of the potential liabilities of numerical least squares 
analysis in a double-precision environment. This is why it has been a recurring theme in this 
book, and why table 11.15.2 summarized the results of our encounters with it. It does inspire 
confidence when software can pass even unrealistically severe tests in real problem areas, espe-
cially when it is within such easy reach as through the combination of Excel and XN. 

The power of XN is that it directly addresses the root cause of most problems specific to numerical 
analysis, viz. the limited precision provided by software based on the IEEE 754 protocol. In fact, XN has 
far more numerical precision than you may ever need, and this spare precision makes it ready for much 
tougher problems. Using 600 decimals for Filip.dat is certainly overkill for the NIST data: with xnLS you 
can get identical results with just 34 decimals. But when you reduce that number to 28, the fit is poor, 
mainly because of errors in computing the higher powers of x, and with D < 20 you will get no valid an-
swers whatsoever, see Table 11.15.1. Because the double precision of IEE-754 is really the limiting fac-
tor, and XN completely bypasses it, there is no need to introduce SVD into xnLS, which would merely 
slow it down.     
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	xMPowraising a square matrix to an integer power n, = Mn
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