Experience with a course on scientific data analysis using a spreadsheet

Introduction

Although science is increasingly becoming more mathematical, scientific data analysis as such exists in few scientific curricula. I am a chemist, and in the undergraduate chemistry curriculum its most logical places would be in quantitative analysis, or in physical chemistry. But both of these sub-disciplines are under pressure to give up teaching time to, e.g., new developments in biochemistry: in the case of analytical chemistry in order to make space for that important and vibrant aspect of chemistry, in the case of physical chemistry also to stem possible loss of students to ‘easier’ (read: less math-oriented) disciplines such as biology. Similar pressures exist, no doubt, in other areas of the ‘hard’ sciences I consider here, such as physics, biology, and geology; students and teachers have only so much time.

Computer science departments typically do not cater to the special needs of scientists, tend to emphasize computer languages rather than their practical applications, and often look down their nose on Excel. Math departments are more oriented towards propositions, conjectures, lemmas and proofs than applicability, and statistics departments likewise tend to have their own agendas, and to favor specialized statistical software. The best interim solution I have found is a non-required course in scientific data analysis, available to all interested (undergraduate as well as graduate) students already somewhat familiar with Excel, taught annually or once every other year (depending on the size of the department and the minimum class size required by the dean), specialized towards applications, while (especially initially) placing minimal emphasis on computer programming. 

For many years until my retirement I have taught such a course annually at Georgetown University in Washington DC. In retirement, I have occasionally taught this course in my new scientific home, at Bowdoin College. Although my course was primarily geared towards incoming chemistry graduate students, there were a significant number of physicists, biochemists, biologists, and geologists who took it, both senior undergraduates doing research projects and advanced graduate students, and I have taken pains to accommodate them all, both in those classes and in my book. The format I have found most workable is that of a rather small (7- to 15-member) group of students, bringing their own laptops, meeting one or two afternoons a week for 3 hours in a seminar-like setting, with short, structured ‘lecture’ parts plus lots of practice time. 

Hands-on teaching is much more effective, but also far more time-intensive, than just lecturing. The first edition of my book contained only 422 small pages of text, and easily fitted into a once-a-week format; the third edition, with many more examples throughout plus 3 additional chapters, now occupies 646 much larger pages, and is best served with a twice-weekly schedule, unless a much narrower selection of topics is made by the instructor. 

After wife and I moved to Maine, and I found a nearby college that kindly accepted me as an adjunct, I have continued teaching this course occasionally. I have used my Advanced Excel for scientific data analysis as its center, even though that book is primarily intended for self-study by professionals. Every year I also teach three separate one-day ‘short’ courses on some of the more specialized parts of this material (mostly from chapters 2-4, 8, and 10-11 respectively) to chemistry professionals at the Pittcon meeting.  

Why a spreadsheet, and why Excel?

In my 34-year teaching experience at Georgetown University I have observed that most undergraduate and graduate students in the ‘hard’ sciences prefer to use a spreadsheet (nowadays almost synonymous with Excel), which they already have used in high school, and have on their laptops, over having to learn a new program and/or computer language for every new course or teacher. It is not only prior familiarity, but also Excel’s transparency and the ability to see intermediate results. There certainly are many powerful general-purpose programs (Mathematica, Maple, Fortran, C), and many excellent, more specialized programs (such as Matlab for matrix algebra, and R, Octave, and SAS for statistics), but with the aid of free, open-access add-ins to Excel as described in my book, Excel is now not far behind. Just take a look at Appendices C and D, reproduced in their entirety in SampleSections3, for what Matrix.xla(m) and XN.xla(m) now have to offer. Even many engineers prefer Excel when it can do the job, because it is so easily shared with colleagues.

For example, Leonardo Volpi added more than 125 functions for matrix operations, including functions for eigenanalysis and singular value decomposition, as explained and illustrated in my book, to the paltry 5 matrix functions of Microsoft's Excel. Moreover, again thanks to free, open-access add-ons originally contributed by Volpi, and greatly enlarged and empowered by John Beyers, Excel now has the advantage of being able to compute, at the user's option, its intermediate (and, if desired, final output) results with up to more than 32,000 correct decimals, using all of Excel's math, trig, and statistical functions, and many more! It can therefore often apply much simpler algorithms to get results correct to the 15 decimals of the IEEE-754 protocol. Typically, a 50-decimal precision is plentiful for most problems known to lose precision in their data processing, such as numerical differentiation and matrix inversion. In fact, 35 decimals suffice to cream all NIST StRD linear least square tests to their 15 specified decimals, with a routine algorithm using standard matrix inversion, while the added computer time for such relatively small extra precision is often hardly noticeable. 

Why the emphasis on matrix algebra? Because modern science deals increasingly with quite complicated, multi-parameter real-world problems, in which case matrix algebra is by far the most efficient way to solve them. The same applies to statistics, which uses matrix algebra at all but its most basic levels.  

Why the emphasis on 15 correct decimals? Because the computer typically shows its results in that format, often without any indication of how many of these are significant. Most often, quite a few of the decimals shown are significant, but sometimes not a single one is correct. The latter can happen with common, seemingly ‘simple’ math operations, such as differentiation and matrix inversion, yet their results are displayed with equal aplomb. Under those circumstances it is useful to have the tools available to test the figures and, if warranted, to make sure that all are indeed precise. Then consider their statistical constraints, as expressed by, e.g., their standard deviations and the corresponding covariance matrix, to find their numerical significance.  

By bundling Excel with VBA, Microsoft won the competition with Lotus 1-2-3 and QuattroPro. At present, almost every laptop or desktop sold in the US has Excel pre-installed, and it has become the standard spreadsheet worldwide. Whether you like Microsoft or not (and I often find myself in the second category, especially after it exchanged its compact, efficient icon-based system in 2007 for space- and time-hogging ribbons in order to force new spreadsheet sales without adding much new user value), there is no denying Excel’s current market dominance. Eventually one may hope that a free, open-access spreadsheet will take its place, but that day, if it ever comes, will still be far-off. 

What topics to cover?

While my book is organized as a textbook, it teaches more by example than from a strictly theoretical perspective. Still, I tend to follow the chapter and section sequence, typically by selective omission of somewhat peripheral topics, depending on student interests. The first two meetings I usually spend by going over Excel’s most basic properties: absolute vs. relative addressing, how to manipulate data arrays (with Ctrl(Shift(Enter or, on the Mac, with Command( Return), the difference between a continuously responding function and a possibly more competent but snapshot-generating macro, how to call and engage functions and macros. I show how to plot spreadsheet data, how to select, interchange or otherwise modify its axes, how to add data points and/or curves, how to plot curves and points, and how to distinguish between experimental data points and their (usually continuous) model values. I illustrate maps and plots suggesting three dimensions. The students reproduce the examples on their laptops, and I help them solve any problems they encounter. Finally I discuss the lay-out of a spreadsheet, with clearly separated areas for input data, data processing, and output results, one that flows from left to right or from top to bottom, but with space reserved at the top for plotting output results. 

Next I focus for two or three sessions on error analysis, the difference between random and systematic errors, the standard deviation as a measure of random errors, and linear least squares analysis, where the term ‘linear’ applies to the fitting parameters, but not necessarily to the fitted function. Here I closely follow the progression in chapter 2, first fitting data to a (single-para-meter) proportionality, and then to a (two-parameter) line. More than one fitting parameter leads to the possibility of mutual dependence of the output parameters, and of the covariance as its measure, and also leads to general error propagation. By this time we are using the MacroBundle, especially the macros LS and Propagation, as well as the sparse Excel function LinEst and its rather exuberant Regression macro, compare block D4:E8 in Fig. 2.3.2 with Fig. 2.4.1. 

While I briefly go over the conceptual and mathematical background, which can also be found in my book, I mostly illustrate the above aspects with the numerical examples of chapter 2 and with others from the literature, keeping the discussion concrete and data-based rather than abstract. I usually end up this chapter with a discussion of the shape of the least-squares minimum, contrasting, e.g., the very sharp minimum in the Rosenbrock function of section 1.5 with the trench-like region of section 2.17, and with a discussion of phantom relations (section 2.18).

 Chapter 3 will occupy the next few sessions, applying linear least squares to explicitly nonlinear model functions. The problem areas here are selecting the best model, and considering what the data may imply in this respect. I typically soft-pedal or delete the use of orthogonal functions (as too abstract and no longer needed), and emphasize sections such as 3.7 (on spectral mixture analysis), 3.14 (letting the data guide you) and 3.15 (focusing on selecting an appropriate analysis model) without necessarily going into all the details provided in my book. Then I briefly look at least squares analysis for equidistant data (using Barak’s ELS macro) and some of the numerical examples of sections 3.18 though 3.22. Much of the latter material is useful to have in one place, but need not be covered in any detail in a course.

  Chapter 4, on nonlinear least squares, is one of the longest in my book. Here I typically choose my subjects depending on student interest. For example, I may assign sections 4.3 and 4.4 for special study by analytical students (and by those who appreciate that spreadsheets often require an approach different from the traditional one, which may even lead to a generally improved data analysis model), sections 4.5 through 4.7 to biologists and organic chemists, sections 4.9 through 4.13 to physicists and physical chemists, and then pick and chose from the remaining examples in this long chapter. For most of chapter 4 I use Solver plus SolverAid from the Macro Bundle, but I also discuss Garcia’s fine and often superior Levenberg-Marquardt routine (section 4.24), and end by using one of the IMEP examples (as in section 4.26) to illustrate how far we still have to go. 

I usually spend much less time with chapters 5 and 6 (on Fourier transformation and deconvolution respectively), merely discussing sections 5.1 through 5.5 and 5.10 of the first, and 6.1 through 6.5, and 6.9 plus 6.10 of the second. By now the students are familiar with my book, and can find their way to more detail-oriented areas they might need in their own research. Chapter 5 mostly uses the fast Fourier transform macros ForwardFT and InverseFT from the MacroBundle, and chapter 6 my direct or Fourier transform (de)convolution macros as well as a macro for iterative (van Cittert) deconvolution of section 6.6, a neat example of deconvolution using Solver in section 6.7, and the detailed description of deconvolution by parameterization of section 6.8. XN contains additional functions for two-dimensional fast Fourier transformation, FFT2D and FTT2D_​INV, and the XN macros DFT and 2D DFT for one- and two-dimensional discrete Fourier transform respectively, i.e., for an arbitrary number of input data rather than just 2n. Finally, the MacroBundle has a Gabor transformation macro, see sections 6.9 and 6.10. For interested students there is a lot to explore on their own.

Chapter 7 provides a crucial example of the possible advantages of hybrid methods. Digital simulation is a powerful and quite general method, impervious to nonlinear behavior or higher-order derivatives, but it delivers numerical results applicable only to the specific numerical values of the model parameters used, and as such has very limited predictive power. But once it is combined with a nonlinear least squares program, such as Solver or a Levenberg-Marquardt routine, that is able to adjust the parameter values of the simulation to fit numerical data, we have a powerful and most general method to fit a known model to a set of experimental data. I emphasize the ease of coding explicit and semi-implicit Euler integration, then morph to the more powerful Runge-Kutta approach, for which XN contains a fast and convenient algorithm (section 7.7). I also use this chapter to illustrate that the distinction between random and systematic errors may easily get lost during data analysis. In this chapter my examples are mostly chemical: the shelf life of medicinal solutions (section 7.4), mother-daughter reactions (throughout the chapter), and the Lotka oscillator (sections 7.8 through 7.10). For a different audience, try to find different examples.

Chapter 8 has the potential to greatly empower the student. It describes in detail (insofar as that is possible in just over 60 pages) how to write one’s own functions and macros where Microsoft does not provide these. After all, Excel is primarily a business program, and cannot be expected to be all things to all users. Again I have taken a very applied approach, with many short sample snippets to perform single tasks. A much more extensive, free and open-access set of MacroMorsels can be downloaded from my website, and the MacroBundle illustrates how these parts can be combined into entire programs. 

This chapter takes at least three sessions, because VBA is best learned by applying it to increasingly more complex problems. I include editing tools, error-trapping and -recovery, and debugging. Yes, VBA is not a modern, high-level language, and can be temperamental at times. But its computing power is roughly equivalent to that of Fortran77, which was the world standard for some 15 years, and in which most of the currently used data analysis and statistical programs were developed. Of course, Excel’s user- friendliness takes its toll, but as long as Moore’s law applies, that is of decreasing importance. Usually only highly iterative algorithms, such as Solver or Levenberg-Marquardt, show any noticeable execution delay. Anyway, gratification does not always need a time constant of less than the blink of an eye.    

Chapter 9 goes into details about some common mathematical operations in a numerical computer. I usually skip section 9.2 (which describes my own differentiation algorithm) except for a brief, qualitative interpretation of Fig. 9.2.5 on page 415, then truncate section 9.4 (about numerical integration), and I may also skip section 9.6. Section 9.7 about complex numbers is of course essential. Those who like this type of applied math may read it on their own, while those who don’t, need not be discouraged by it. With what Microsoft supplies, plus the MacroBundle, Matrix, XN, and the other add-ons provided, Excel is already a quite powerful package.

Chapter 10 describes how to use the spreadsheet for matrix algebra. I treat it in fair detail, because it illustrates the unusually good match between the rectangular spreadsheet grid and the needs of two-dimensional matrices of any rank and order. It also contains aspects that are directly relevant to data analysis, such as explaining the traditional matrix formalism of linear least squares analysis (section 10.5). But there is much more here, especially in sections 10.9 through 10.15. Any student interested in modern data analysis, even in fields outside the physical sciences, should read section 10.13 on singular value decomposition, the basis of principal component analysis and of many other, related approaches that are as popular in psychology as in chemometrics. 

Finally there is chapter 11, of which the second half (sections 11.10 though 11.16) is devoted to describing extended-precision calculations in Excel. This approach allows non-computer scientists to make their computations without having to know the latest tricks to optimize their algorithms. One may consider this inelegant, but one can equally well argue that it is a direct work-around of the basic limitation of digital computers, namely their limited wordlength. Data with more that 15 significant numbers are never encountered in science; not even the speed of light or the mass of a neutron are known to that kind of precision. But extended precision is very useful whenever there is a risk of loss of precision during data processing, as in numerical differentiation or matrix inversion. In those cases it is very useful to have this check available, and it can even give you some bragging rights the next time someone offers denigrating comments about using a spreadsheet. 

The student projects

I have given increasingly vague indications of the course outline, because by now the students should be involved mostly in their final projects, which they typically need to have selected by the middle of the semester. Students are free to propose their own topics (and try them provided they seem feasible) or to select a topic from a list the instructor must have ready. It may be related to their research, but need not be; it can be writing and debugging the code for a specific function or macro, converting an open-access double-precision function or macro to extended precision, trying a new algorithm on a data set, solving a problem of coupled ordinary differential equations or a digital simulation, designing and executing a statistically valid data analysis procedure for their research data, or whatever seems interesting and worthwhile to them. 

For example, a chemistry/economics double major suggested doing a Fourier analysis to predict the stock market; I agreed on condition that he first try out applying that method to the tides. He was successful with the first, which became an interesting example of a hybrid approach, alternating between Fourier transformation (good at showing periodicity) and non-linear least squares analysis (good at yielding their precise frequencies), and of course failed after applying a similar approach to the stock market, which lacks an internal clock or anything predictable. I had a student who proposed and successfully used the extensive set of VBA functions for letter recognition and string manipulation to analyze the DNA coding of amino acids, looking for evolutionary stable occurrence of one of several seemingly equivalent four-letter amino acid codes in corresponding genes. Some students really come up with very imaginative projects!  

Much of the second half of the course is therefore used to help the students with their projects, which they must have completed before the end of the semester. The students are encouraged to ask questions in class when they encounter practical problems with their projects, sharing these problems with the group. If the instructor (or, not infrequently, one of their classmates!) cannot provide a satisfying answer, they can expect one from their instructor the next session, again in class. In that way each student also benefits from the problems their classmates encounter. Near the end of the semester all students must give a short (20 to 30 min) class presentation of what they have achieved, and submit a corresponding, written report. I have not given any tests, and their final grade has depended solely on that project.

There are, of course, as many optimal approaches as there are instructors and, likewise, every class is different and will require fine-adjustment. Here I only describe a general format that has suited me well. While I use Excel for its convenience and easy student acceptance, the general principles involved are largely independent of the computer platform and language used, and can be expected to serve the students for a while. Moreover, my book contains so much material that it should be easy to make one’s own selection, whether one teaches the topic lecture-style, with a hands-on approach or, as described here, with some mixture of these. As always, the most important aspects are the competence and enthusiasm of the instructor, and the active involvement of the students. Best of luck with it! 

